Vibrations and Waves — Problem Sheet 1 ANSWERS

- 1. (i) $Re[\tilde{x}] = 2\cos(6t)$
 - (ii) $Re[\tilde{x}] = -3\sin(5t)$
 - (iii) $Re[\tilde{x}] = 2\cos(6t) 3\sin(6t)$
 - (iv) $Re[\tilde{x}] = cos(6t) + 5 sin(6t)$
- 2. (i) Since force is same on each spring $F = -k_1x_1 = -k_2x_2 \Rightarrow x_1 = k_2x_2/k_1$ as required.
 - (ii) The force applied to the combined system is F and resulting combined extension is $x_1 + x_2$. Substituting for x_1 and x_2 from (i) into the equation given for k_{eff} gives $F = -k_{\text{eff}}(-F/k_1 F/k_2) \Rightarrow k_{\text{eff}} = (1/k_1 + 1/k_2)^{-1}$.
 - (iii) For springs in parallel, the extension is the same for both springs $(x_1 = x_2 = x)$. The total force is the sum of the forces due to each spring, $F = F_1 + F_2 = -k_1x + k_2x = -(k_1 + k_2)x$. Therefore the effective spring constant is $k_{\text{eff}} = k_1 + k_2$.
- 3. (i) $A = 0.05 \,\mathrm{m}$
 - (ii) $\omega_0 = 7.51 \text{s}^{-1}$
 - (iii) $f = \omega_0/(2\pi) = 1.20 \text{ Hz}$
 - (iv) $T = 1/f = 0.84 \,\mathrm{s}$

Using $\omega_0^2 = k/m$ gives $k = m\omega_0^2 = (0.1)(7.51)^2 \text{N/m} = 5.64 \text{ N/m}$.

Initial extension x_0 is such that spring restoring force balances gravitational force, so that -kx = -mg. Then $x_0 = F/k = mg/k = g/\omega_0^2 = (9.8 \text{ m/s}^2)/(7.51 \text{ /s})^2 = 0.17 \text{ m}$.

4. $v(t) = dx(t)/dt = -4A \sin(4t + \phi)$

Use $A = \sqrt{x^2 + (\dot{x}/\omega)^2}$ and $\cos \phi = x/A$ and $\sin \phi = -\dot{x}/(\omega A)$

(i)
$$A = \sqrt{0.3^2 + (0)^2} = 0.3 \,\text{m}$$
 and $\cos \phi = 1, \sin \phi = 0 \implies \phi = 0$

(ii)
$$A = \sqrt{(-0.5)^2 + (0)^2} = 0.5 \,\text{m}$$
 and $\cos \phi = -1, \sin \phi = 0 \implies \phi = \pi$

(iii)
$$A = \sqrt{(0)^2 + (1.2/4)^2} = 0.3 \,\mathrm{m}$$
 and $\cos \phi = 0, \sin \phi = (-1.2)/(4 \times 0.3) = -1 \Rightarrow \phi = -\pi/2$

5. (i) When the liquid is displaced by = +x on the RHS (and -x on the LHS) there is a net gravitational restoring force on the liquid equivalent to the weight difference on the two sides. $F = -\text{volume} \times \text{density} \times g = -2xA\rho g$ (minus since it's a restoring force). Using F = ma, with the total mass of the liquid given by $LA\rho$, this gives

$$-2xA\rho g=LA\rho\frac{\mathsf{d}^2x}{\mathsf{d}t^2}$$

(ii) Rearranging (and cancelling $A\rho$ from both sides) gives

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{2g}{L}x = 0$$

which is the same form as the SHM equation $\ddot{x} + \omega_0^2 x = 0$ and therefore has solutions $x(t) = B\cos(\omega_0 t + \phi)$ with $\omega_0 = \sqrt{2g/L}$. The amplitude B is determined by initial conditions $x(0) = h, \dot{x}(0) = 0$ which gives $B = h, \phi = 0$ giving $x(t) = h\cos(\omega_0 t)$.

(iii)
$$\omega_0 = \sqrt{2g/L}$$
.

(iv)
$$v(t) = \dot{x}(t) = -\omega_0 h \sin(\omega_0 t)$$

(v)
$$a(t) = \ddot{x}(t) = -\omega_0^2 h \cos(\omega_0 t)$$

- (vi) From the diagram, the change in PE from equilibrium is equivalent to moving volume Ax of liquid (from the left to the right side) and raising it a distance x. Therefore $PE = (\rho Ax)gx = g\rho Ax^2 = g\rho Ah^2\cos^2(\omega_0 t)$
- (vii) KE = $(1/2)m\dot{x}^2 = (1/2)\rho LA\omega_0^2h^2\sin^2(\omega_0t)$. But $\omega_0^2 = 2g/L$, and so KE = $\rho gAh^2\sin^2(\omega_0t)$.
- (viii) Total energy $TE = PE + KE = \rho gAh^2$.

(ix) KE = TE - PE =
$$\rho gAh^2 - PE = \rho gAh^2 - \rho gAx^2 = \rho gA(h^2 - x^2)$$

Paul Tangney 2 of 2