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Relativity - Solutions to Problem Sheet 1

Topics covered: postulates of Relativity, proper time, time dilation, length contraction.

Questions to try in your own time

1. It is common practice to scale velocities by the speed of light, so we define § = v/c and v =
1/4/1 — 2. B is thus a dimensionless number between —1 and 1.

(a) For what positive values of 8 is v = 1.17 v =27 v = 207
ANSWER: v = 1.1 implies 1/4/1 — 32 = 1.1, or 1— 3% = 1/1.21. Thus 8 = 0.4166. Similarly,
for v =2, 8 =0.8660 and for v = 20, 8 = 0.9987.

(b) What values of v are given by 5 = 0.097 g = 0.907 8 = 0.997
ANSWER: v = 1/4/1— 2 so for § = 0.09 then v = 1/4/0.9919 = 1.004. Similarly for
B =0.90 then v = 2.294 and for 8 = 0.99 then v = 7.089

(¢) For small values of 3, derive an approximate expression for 7 in terms of 3, keeping terms up
to 3%. (Hint: use the binomial expansion.) How close is this approximation to the true value
of v for 8 =0.097
ANSWER: v = (1 — 82)~'/2. Using the binomial expansion (1 4 z)" ~ 1 4+ nx, this gives

TR L4 (1/2)(-%) ~ 1+ 52

Using this approximation, then for 8 = 0.09, v ~ 1 + 0.0081/2 ~ 1.00405, while the exact
value is 1.00407 so they differ only at the sixth significant figure.

2. A spaceship travelling at constant 5 = 0.75 travels from the Earth to the centre of the Milky Way,
which in the Earth’s inertial frame is a distance of L = 27,000 light-years away. (Note that 1
light-year is the distance light travels in 1 year.) Ignore any movement of the Earth relative to
the centre of the Milky Way. It would be good practise to work in units of years and light-years
directly, without converting to SI and back.

(a) How long does the trip take as measured by an observer in the Earth’s frame?
ANSWER: This requires no knowledge of Relativity; the time is distance over speed so for
an observer on the Earth ¢ = 27,000¢/0.75¢ = 36,000 years.

(b) What is the distance L’ between Earth and the centre of the Milky Way as seen by an observer
in the spaceship’s inertial reference frame?
ANSWER: The value of v = 1/4/1 —0.752 = 1.51. The rest frame of the length is the
Earth-Milky Way frame, so due to length contraction the spaceship sees a shorter length of
L' =L/y=27,000/1.51 = 17900 light-years.

(¢) At what speed does the observer on the spaceship see the centre of the Milky Way coming
towards the spaceship?
ANSWER: The relative speed of the Earth (and hence centre of the Milky Way) and the
spaceship is 0.75¢ = 2.25 x 108 m/s, so the Earth sees the spaceship moving with this speed.
Similarly the spaceship sees the Earth (and hence centre of the Milky Way) moving at the
same speed, but in the opposite direction.

(d) Given (b) and (c¢), what length of time does the observer on the spaceship measure for the
trip? Is this consistent your answer to (a) given time dilation?
ANSWER: Using the contracted length, the spaceship measures a time of ¢ = L’/0.75 =
17900/0.75 = 23800 years. The observer’s clock on the spaceship records proper time, so
t' =t/ =36000/1.51 = 23800 years. Hence, the results are consistent.

3. This question takes you through an observation which provides a direct experimental confirmation
of time dilation and length contraction.

When cosmic rays strike the upper atmosphere 10 km from the Earth’s surface, they create muons.
Muons decay quickly to electrons, with a lifetime of 7 = 2.2 us when they are at rest. Like nuclei,
particles such as muons decay on average with an exponential function N = Nye*/7, where Ny
is the initial number of particles and N is the number of particles that have not yet decayed after
time ¢. Note that this means that if 1000 muons are created simultaneously, after 2.2 us on average
1000e~! = 368 muons will left, while the rest will have decayed into electrons.
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(a)

The muons move at a speed close to the speed of light: 5 = 0.995. Ignoring any time dilation,
if one particular muon decayed after exactly 1 lifetime how far would it have travelled towards
the Earth’s surface before it decayed into an electron?

ANSWER: The distance it would travel would be D = Bcr = 0.995x3x108x2.2x1076 = 657

m.

Again ignoring time dilation, use the exponential function of particle decay to find the average
fraction of muons predicted to reach the Earth’s surface.
ANSWER: The fraction that would reach the surface would be

_10%/(0.995x3x108)

N/Ng=eH/T=¢™ 2ot~ =24x10"7

We actually observe a much higher fraction of the muons created at the top of the atmosphere
make it all the way to the Earth’s surface and this is due to relativistic effects. Let’s look at
this in the muon’s rest frame: for the muon the path length through the atmosphere to the
surface is length contracted. How far does the muon measure the Earth’s surface to be from
the point at which it is created?

ANSWER: For § = 0.995, then v = 10.01. Hence, in the muon’s frame: L' = L/y = 1.0 km.
This is 10 times shorter than in Earth’s frame - we therefore expect significantly more muons
to arrive at the Earth’s surface.

In the Earth’s frame, we can explain the same effect by time dilation, as the muon lifetime can
be treated as a physical clock. What is the lifetime of the moving muon in the Earth’s frame?
ANSWER: In Earth’s frame: tjjfe = y7 = 2.2 x 107° s. (The life time is 10 times longer in
Earth’s frame than in the muon’s rest frame).

Using the exponential function of particle decay, and the lifetime observed in Earth’s frame,
what percentage of muons is predicted to reach the Earth’s surface now?
ANSWER: The predicted fraction to reach the Earth’s surface is

104 /(0.995x3x108)

N/Ny=e /" =¢ = 22x05  =(.22

This means 22% of the muons created in the upper atmosphere reach the Earth’s surface.
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4. Tutorial problem: length contraction

In Lecture 3 we derived the length contraction formula I’ = [/~ by considering the measurement of
a moving rod in two frames. This problem leads you through an alternate derivation based on the
invariance of the speed of light. This is the inverse problem to the one in the same lecture, where
we checked time dilation by assuming length contraction.

Consider a light clock with the light pulse emitter/detector and mirror separated in the z direction
by a distance d in the clock rest frame, C. The time required for a light pulse to travel from the
emitter to the mirror is ¢t; = d/c and this is clearly equal to the time for the return trip ¢ty = d/c.
Hence, the total period of the clock is

2d
T=t+ty=—
C

Inertial frame M observes the entire apparatus moving to the right with speed v in the x direction.
Frame M measures the separation to be d’, which we want to determine in terms of d and v.

(a) View the situation from within frame M. Call the time for the light to travel from the emitter
to the mirror in this frame ¢{. How far does the mirror move in this time? What distance
does the light pulse travel in terms of ¢} , v, and d’? This distance must equal c¢t}. You should
therefore find that 7

cC—v

t) =

ANSWER: The mirror travels a distance x = vt]. The light pulse travels a distance d; =
d' + vt]. Hence ¢t} = d' + vt}, so | = d'/(c —v).

(b) Using the same logic, find the time ¢, for the light pulse to return from the mirror to the
detector in frame M in terms of d’, ¢, and v. Hence find the clock period T' = ¢} + ¢4 in this
frame.

ANSWER: For the way back: the light travels a distance dy = d’ — vt,. This gives cth =
d' —vth so th =d /(c+v). Hence
d d d(c+v)+d(c—v) 2d'c

c—v c+v c2 —? c? — 2

(¢) Which reference frame measures proper time for the light clock?
ANSWER: The clock measures the time between two events; the emission of the light pulse,
and the return of the light pulse to the detector. (Note, it does not measure the time the
light pulse hits the mirror.) In frame C these two events occur at the same place (i.e. at the
position of the emitter/detector). Therefore the clock is at rest in frame C, and so this frame
measures proper time for these two events.

(d) We know that the periods in the two frames are related by the time dilation formula 77 = 4T
Rewrite this equation in terms of d’, d, v, and c. You should now be able to retrieve the length
contraction formula.

ANSWER: The time dilation formula requires

2d'c 2d

2z 2 T
Cancelling the 2 and rearranging the factors of ¢ gives

d d )
= = d/ = d
-2/ 1-p 177

and so d’ = d/~ as required.
(e) Show that
th # vty and th # Yo

Why do these not hold?
ANSWER: Using the length contraction formula

d d  ~d 1

c—v Ae—v) e “pa_p T~

1
72(1 - B)
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Similarly
1

th =ty X ———
? 72(1+B)
and so the inequalities stated in the question are correct. Time dilation relates the proper time,
measuring in the rest frame of an object, to the time in an inertial frame where the object is
moving. The important factor is that the proper time measures the time for an object at rest,
i.e. at the same position as a function of time. However, t; and to relate to the times between
the two ends of the light paths. The two ends are not at the same position, even in the overall
light clock rest frame, which means the time dilation formula does not apply.
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Multiple choice questions for coursework

1. True or false: “In principle, it is possible for an observer following a pulse of light at a constant
high speed to observe the light pulse to be almost stationary.”

(a) True
(b) False

ANSWER: (b) False.

The observer travelling at high speed will still observe the light pulse travelling at speed ¢ away
from him (by postulate 2).(Don’t confuse this with an observer in a different inertial frame who
can see the first observer and the light pulse travelling at nearly the same speed.) [2 marks]

2. Abi is in a spaceship moving at high speed relative to Ben, who is standing on an asteroid (a rock
floating in space). She flies past him so that at ¢ = 0, she is momentarily adjacent to Ben. At the
instant that Abi’s spaceship passes Ben, she sends two light pulses to him from her spaceship. If
the light pulses are emitted a nanosecond (10~% seconds) apart according to Abi’s clock, what will
be the time interval between the pulses according to Ben?

(a) Greater than one nanosecond
(b) Equal to one nanosecond

(c) Less than one nanosecond

ANSWER: (a) Greater than one nanosecond.

Abi records proper time in this situation (she emits the two light pulses in the same place in her
frame). Ben will therefore observe her clock to run slow, and will receive the pulses with a time
interval which is > one nanosecond. [2 marks]

3. Also while Abi’s spaceship passes Ben, Ben sends two light pulses to Abi. If Ben sends the light
pulses a nanosecond apart according to his clock, what will be the time interval between the pulses
according to Abi?

(a) Greater than one nanosecond
(b) Equal to one nanosecond

(c) Less than one nanosecond

ANSWER: (a) Greater than one nanosecond.

This time the situation is opposite: Ben records proper time as he emits the two light pulses in the

same place in his frame. Abi receives the pulses with a time interval which is > one nanosecond.
[3 marks]

4. Two identical rockets are floating in space one behind the other, at rest relative to an observer.
The observer instructs both rockets to fire their engines at exactly the same time and, as they are
identical, they then have the same acceleration. After a pre-programmed time, both engines shut
off and the rockets drift at some constant speed relative to the observer. Since their accelerations
are identical, they have the same distance between them at all times as measured by the observer,
including after the engines are turned off.

Thread

As shown in the diagram, a thin piece of thread was tied between the tail fin of the first and second
rocket before the engines started, such that it was taut. After the acceleration, when the rockets
are drifting, what will the state of the thread be?

(a) Still taut.

(b) Snapped.

(¢) Slack.
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ANSWER: (b) Snapped.

Because it was originally taut, the length of the thread in its rest frame is the same as the distance
between the rockets. The rockets have the same distance apart when drifting in the observer frame,
but the thread rest frame is no longer the observer frame. If it was floating freely, the observer
would see the thread Lorentz contracted by 1/v. As it is tied at both ends, this means it must
snap as this is shorter than the distance between the rockets. The rockets themselves also Lorentz
contract so the start and end views are as shown below.

This seems to contradict what you might expect from considering the two rockets and thread as one
system, as it seems that it would simply all Lorentz contract in the moving frame, with the thread
still taut. However, this is not a passive transformation. Because the distance between the rockets
in the observer frame (not their rest frame) is forced to be constant by the rocket accelerations,
then Lorentz contraction requires that the distance between them in the rocket rest frame is larger,
i.e. so that this length still contracts to the constant distance in the observer frame. The pilots on
each rocket would see the other rocket getting further and further away while the acceleration was
happening.

It might help to contrast this with what would happen if the rockets were bolted together rigidly and
only the rear rocket engine was used (but with increased power so as to give the same acceleration
for the whole structure). The whole double rocket system would Lorentz contract so the distance
between e.g. the two engines would not remain the same any more. The two cases are compared
below.

[3 marks]
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