
Paul Dauncey Available 8 June 2018

Relativity - Solutions to Problem Sheet 4

Topics covered: particle collisions, the Relativistic Doppler effect

Questions to try in your own time

1. A particle of mass m, whose total energy is twice its rest energy, collides with an identical particle
at rest. If they react to form a new particle, what would be its mass M? Show its velocity is c/

√
3.

ANSWER: The total energy considering the initial system is ET = 2mc2+mc2 = 3mc2, including
both particles, and the total momentum is pT c =

√
(2mc2)2 − (mc2)2 =

√
3mc2, entirely from the

first particle. Since energy and momentum are conserved, these must be equal to the energy and
momentum of the final particle, so it has a four-momentum (ET , ~pT ). Hence, its mass must be
given by

M2c4 = E2
T − p2T c2 = 9m2c4 − 3m2c4 = 6m2c4 so M =

√
6m

The final particle speed can be found using the standard formula u = pc2/E, so

u =
pT c

2

ET
=

√
3mc3

3mc2
=

c√
3

2. Two protons (mp = 1.67× 10−27 kg) are initially moving with equal speeds in opposite directions.
The protons continue to exist after a collision that also produces an η particle (mη = 9.75×10−28 kg).

(a) If the two protons and the η are all at rest after the collision, find the initial speed of the
protons, expressed as a fraction of the speed of light.
ANSWER: The initial total energy of the two protons is 2γumpc

2. Since all three particles
are at rest after the collision, the final total energy is 2mpc

2 + mηc
2. Conservation of energy

means we can equate these two:

2mpc
2 +mηc

2 = 2γumpc
2 so γu = 1 +

mη

2mp
= 1.29 and βu =

√
1− 1

γ2u
= 0.633

Hence the proton speed is 0.633c.

(b) What is the kinetic energy of each proton before the collision? Express your answer in MeV.
ANSWER: The kinetic energy of each proton is K = (γu − 1)mpc

2 = 4.39 × 10−11 J =
274 MeV.

(c) What is the rest energy of the η, expressed in MeV?
ANSWER: Rest energy is mηc

2 = 8.78× 10−11 J = 548 MeV.

(d) Discuss the relationship between the answers to parts (b) and (c).
ANSWER: The protons lose all the kinetic energy in the collision; this is 2×274 = 548 MeV,
which is equal to the energy needed to produce the new particle.

3. Protons and their antimatter equivalent, called antiprotons p, have identical masses. A proton and
antiproton can annihilate each other and one possible outcome is the creation of a positive and
negative pion pair, π+ and π−

p+ p → π+ + π−

The rest mass energy of each pion is 140 MeV. Assume the proton and antiproton are travelling
with velocities of equal magnitude and opposite direction.

(a) Does this reaction have a proton/antiproton energy threshold?
ANSWER: The proton (and hence also antiproton) mass is given in the previous question
and so mpc

2 = 1.50× 10−10 J = 939 MeV. This is greater than the pion mass and so there will
always be sufficient energy for the reaction, even with if the proton and antiproton have no
kinetic energy.

(b) What is the energy of each pion in terms of the energy of the proton (or antiproton)?
ANSWER: Since both the initial particles have the same mass as each other, and the final
particles also have the same mass as each other, then by symmetry the total energy must be
equally divided in both cases. Hence Ep = ET /2 = Eπ.
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(c) If the proton and antiproton are travelling very slowly before the reaction such that their
kinetic energy is negligible, what is the kinetic energy of each pion?
ANSWER: In this case Ep = Eπ = 939 MeV so each pion has a kinetic energy Kπ =
Eπ −mπc

2 = 799 MeV.

4. Use the quantum Planck-Einstein and de Broglie relations to write the four-momentum for a pho-
ton moving in the x direction in terms of its frequency f only. Subsequently, apply a Lorentz
transformation to transform to an inertial frame with a speed v = βc, firstly along the −x axis
and secondly along the +x axis. Hence retrieve the Doppler formulæ for both forward (blue) and
backward (red) shifts ff = f

√
(1 + β)/(1− β) and fb = f

√
(1− β)/(1 + β).

ANSWER: The four-momentum for a photon (taking p along the x-axis) is

(E, pc, 0, 0) = (hf,
hc

λ
, 0, 0) = (hf, hf, 0, 0)

Transforming to a frame moving with −β gives

E′ = hf ′ = γ(E + βpc) = γ(hf + βhf) = hfγ(1 + β)

Therefore

ff = f
1√

1− β2
(1 + β) = f

√
(1 + β)2

(1 + β)(1− β)
= f

√
1 + β

1− β

Clearly, the opposite boost simply changes the sign of β so

fb = f

√
1− β
1 + β

5. In a spiral galaxy individual stars rotate in a flat plane about the galactic centre.

(a) A spiral galaxy with a diameter of 100,000 light-years is observed edge-on from Earth. At
either edge of the galaxy, light from a hydrogen emission line is recorded at a wavelength
of 536 nm and 803 nm. This emission line has λ = 656 nm in a lab on Earth. What is the
rotational period of this galaxy?
ANSWER: It is easiest to invert Doppler formula in terms of wavelength

λ′

λ
=

√
1− β
1 + β

so β =
1− (λ′/λ)2

1 + (λ′/λ)2

Putting in the given values gives v1 = 0.2c and v2 = −0.2c which means the outer edge of the
galaxy is rotating with a speed 0.2c. The circumference is π × 105 light-years and hence the
rotational period is π × 105/0.2 = 1.58× 106 years.

(b) The same hydrogen line in a different spiral galaxy, also observed edge-on, has measured
wavelengths of 558 nm and 726 nm at each edge of the galaxy. Calculate the velocities these
Doppler shifts imply. Without doing any detailed calculations, comment on the possible motion
of this galaxy.
ANSWER: These wavelengths give v1 = 0.16c and v2 = −0.10c. The galaxy is both rotating
and moving towards Earth.

6. Spectators are watching a race between two relatistvistic race cars. They see car A speed towards
them at β = 2/3, whereas car B has gone passed and is speeding away at β = 1/2. (You can assume
the positions of both cars and the spectators lie on a straight line, with the direction of motion of
the cars along the line). Both cars are painted yellow with a peak wavelength of 580 nm.

(a) What peak wavelength do the spectators see for each car?
ANSWER: Using the relativistic Doppler shift formula, with the forward case for car A and
the backward case for car B

λA = λ

√
1− β
1 + β

λB = λ

√
1 + β

1− β

For car A this gives 580
√

(1/3)/(5/3) = 259 nm (blue-shifted), while for car B this gives

580
√

(3/2)/(1/2) = 1005 nm (red-shifted).
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(b) What peak wavelength does car B look like to car A? What about car A to car B?
ANSWER: To get the right velocity for car B in car A’s rest frame, use the velocity addition
formula to obtain

β′ =
(1/2)− (2/3)

1− (1/2)(2/3)
= −1

4

This is negative because car A is going faster than car B in the spectator frame. Therefore
car B is approaching car A in car A’s rest frame with speed 1/4. Hence we use the forward
Doppler formula with 1/4 which gives 580

√
(3/4)/(5/4) = 449 nm (blue-shifted). Without any

calculation we know that car A’s peak wavelength will also be observed at 449 nm by car B, as
the relativistic Doppler effect is entirely symmetrical: we cannot distinguish between inertial
frames.

(c) Now assume cars A and B are travelling much slower, at vA = 2w/3 and vB = w/2, where w
is the speed of sound, and the cars’ engines produce a sound at 500 Hz. Using the classical
Doppler equation, what sound frequency does car B record from car A’s engine? What about
car A from car B? Explain the differences between this scenario and the previous one.
ANSWER: We now need to use the classical Doppler effect, not only because the speeds
are much lower than the speed of light, but because we also need to account for the fact
that sound moves through a medium. This means the Doppler effect is not symmetrical for a
moving source and moving detector. The classical Doppler effect for a source moving towards
a forward detector is:

ffS =
f

1− (vS/w)

and for a moving detector we have:

ffD = f [1 + (vD/w)]

For a moving source AND moving detector we need to combine the two formulæ

ffDS = f
1 + (vD/w)

1− (vS/w)

For car A recording the sound of car B, vS = −w/2, and vD = 2w/3. This gives us ffDS =
500× (1 + 2/3)/(1 + 1/2) = 556 Hz. For car B recording the sound of car A, vS = 2w/3, and
vD = −w/2. The result is ffDS = 500× (1− 1/2)/(1− 2/3) = 750 Hz.

The differences, as already mentioned above, are (i) using the classical Doppler effect we are
not taking time dilation into account, so there is no γ factor in the formula, and (ii) the
Doppler effect for sound is not symmetrical for observer or source motion. We could use this
effect distinguish between reference frames by comparing them to the frame where the sound
medium (air) is stationary.
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7. Tutorial problem: fixed target vs colliding beam experiments

The first particle physics experiments involved accelerating a beam of protons to high energy and
then colliding them with a target at rest. A target such as liquid hydrogen would result in proton-
proton reactions.

This is technically simple, but an inefficient way to make new particles because some of the initial
energy goes into the kinetic energy of the collision products, rather than into their mass. It is better
to collide two beams of protons head-on. This question compares the energy E∗ needed by a proton
hitting another at rest to give the same centre-of-mass (CM) energy ECM as two colliding protons
of energy E each.

(a) Classically, the only relevant energy is kinetic, K. Using classical calculations, show that to
get the same CM energy, the kinetic energy K∗ required by a proton hitting another at rest
must be 4K, where K is the energy of each proton when colliding head-on. What fraction of
K∗ appears as the CM energy?
ANSWER: Since the total momentum of the two colliding protons is zero, then all the
energy is the CM energy, so it is 2K. If the speed of each proton is u, then K = mpu

2/2.
By transforming by speed u, then one of the protons will be at rest and the other will have
u′ = 2u. This is therefore the case with a proton at rest and the other moving. In this frame,
then K∗ = mpu

′2/2 = 4mpu
2/2 = 4K. The CM energy is ECM = 2K which is therefore half

of K∗.

(b) Still working classically, consider both protons as one “system” for the case when one is at
rest. What is the total mass and momentum of this system? Treating this as one classical
object, calculate its kinetic energy. What fraction of K∗ appears as this overall kinetic energy?
ANSWER: The total mass of the two-proton system is 2mp and its total momentum is 2mpu.
Hence, the kinetic energy of the system is KS = 2mpu

2/2 = mpu
2. This is also half of K∗,

so we find half the incoming proton energy appears in the CM but the other half is needed to
keep the overall system moving, since it has non-zero momentum.

(c) The additional beam energy needed classically would not be so terrible. However, the actual
additional energy needed relativistically can be enormous. Starting from the CM frame, use
the Lorentz transformations for energy and momentum to show that in the frame where one
of the protons is at rest, the other has an energy

E∗ =
2E2

mpc2
−mpc

2

ANSWER: In the CM frame, both protons have equal and opposite momentum. Each has
energy E and let p be their momentum. We know βu = u/c = pc/E and γu = E/mpc

2. We
need to transform to a frame where one proton is at rest, which means a Lorentz transformation
using β = βu. The energy of the other proton E∗ is

E∗ = γu(E+βupc) =
E

mc2

(
E +

p2c2

E

)
=

E2

mpc2
+
p2c2

mpc2
=

E2

mpc2
+
E2 −m2

pc
4

mpc2
=

2E2

mpc2
−mpc

2

(d) Express E and E∗ in terms of relativistic kinetic energy K = E − mc2. Hence show that
the above expression approximates to the classical result when the kinetic energy is small
compared with the rest mass energy.
ANSWER: With E = K +mpc

2 and E∗ = K∗ +mpc
2, then the above becomes

K∗+mpc
2 =

2(K +mpc
2)2

mpc2
−mpc

2 =
2K2 + 4Kmpc

2 + 2m2
pc

4

mpc2
−mpc

2 = 4K+
2K2

mpc2
+mpc

2

Hence

K∗ = 4K

(
1 +

K

2mpc2

)
This gives K∗ ≈ 4K for K � mpc

2, which is the classical limit.

(e) The LHC currently collides protons with E = 6.5 TeV each. Take mp = 1 GeV. What is E∗?
What multiple of E would this amount to? This explains why modern accelerators always
need to face the huge technical challenge of colliding two beams.
ANSWER: Putting in the numbers in TeV gives

E∗ =
2× 6.52

0.001
− 0.001 = 8.4× 104 TeV
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Hence E∗/E = 1.3× 104 is the factor of extra energy needed using one proton at rest. This is
not (currently) technically possible, as 6.5 TeV is already near the limit of our achievable beam
energy. The extra technical complications of a colliding beam experiment are well worthwhile.
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