Basic Electronics

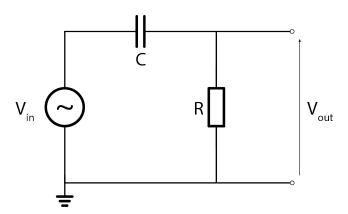
Assessed Problems 3

Hand in before your week 4 deadline.

- **APS3.1** The diagram shows an ideal AC voltage source connected to a series RC circuit which is to be used as a filter.
 - (a) Find an expression for the magnitude of the gain of the filter circuit. [1 mark]
 - (b) Is this a low-pass or high-pass filter? Justify your answer. [1 mark]
 - (c) Show that the cut-off frequency for the filter is given by [1 mark]

$$\omega_c = \frac{1}{RC}$$

For the rest of the question, assume $R=120\,\Omega$, $C=15.625\,\mu\mathrm{F}$ and the AC voltage source has an amplitude 10 V, frequency $200/\pi\,\mathrm{Hz}$, and is a maximum at time t=0.


- (d) Express the circuit's impedance in both complex cartesian and polar form. [1 mark]
- (e) Find the amplitudes of
 - i. the circuit current.
 - ii. the voltage across the resistor.
 - iii. the voltage across the capacitor.

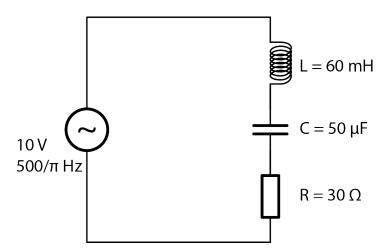
[3 marks]

- (f) Draw the capacitor and resistor voltages on a phasor diagram. Add a phasor representing the applied voltage. [1 mark]
- (g) Hence show that Kirchhoff's voltage law holds.

[1 mark]

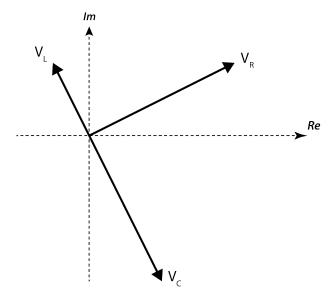
- (h) Does the output signal lead or lag the input? Explain your answer.
- [1 mark]

Hint: It can be useful to represent the three voltages (input, capacitor and resistor) as functions of time and then plot these using Python. You can then check your answers against a simulation of the circuit in LTSpice. This is **not** required to be given as part of your answer, however.


CC 8-Jan-18

Basic Electronics

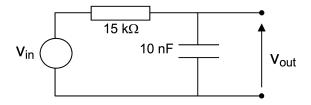
Tutorial Problems 3


These problems are for your week 4 tutorial

- 1. A series LCR circuit comprising a $30\,\Omega$ resistor, $50\,\mu\text{F}$ capacitor and $60\,\text{mH}$ inductor is connected to an ideal $10\,\text{V}$ sinusoidal source operating at a frequency of $500/\pi\,\text{Hz}$.
 - (a) Write an expression for the complex impedance of the LCR circuit.
 - (b) Find the amplitude of the potential difference across
 - i. the resistor,
 - ii. the capacitor,
 - iii. the inductor.
 - (c) Sketch these three as phasors in the complex plane.
 - (d) What is the average power delivered by the source?
 - (e) Find the peak energy stored by
 - i. the capacitor,
 - ii. the inductor.

Discussion Problems

- 2. The figure below shows the phasor diagram for a series LCR circuit. We **don't** know the component values or the driving frequency.
 - (a) Is the driving frequency above, below or at the resonant frequency?
 - (b) Add a phasor representing the amplitude of the applied voltage.

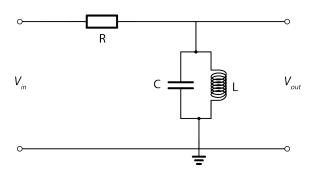

3. Consider a circuit similar to question 1 but where there resistor, capacitor and inductor are in **parallel**. At $\omega = \omega_0 = 1/\sqrt{LC}$, will the magnitude of the impedance be a maximum or a minimum? Contrast this with the series LCR circuit.

CC 16-Jan-17


Basic Electronics

Further Problems 3

1. The ideal source V_{in} applies a sine wave voltage of amplitude 3 V and angular frequency 12566 rad/s to the RC filter shown below. What is the magnitude of the output voltage and what is its phase angle relative to the input?



- 2. A low-pass filter is formed from a $100 \, \mathrm{k}\Omega$ resistor in series with a $100 \, \mathrm{pF}$ capacitor. The RMS voltage across the capacitor is found to be 2V and lags the input voltage V_{in} by $\pi/4$ rad. Which of the following statements about V_{in} is true?
 - (a) $V_{in} = 2\sqrt{2} V_{RMS}$ and $f = 10^5 Hz$
 - (b) $V_{in} = 2\sqrt{2} V_{RMS}$ and f = 6.28 MHz
 - (c) V_{in} has an amplitude of 4 V and $\omega=10^5\,\mathrm{rad/s}$
 - (d) V_{in} has a peak-to-peak amplitude of $4\sqrt{2}\,\mathrm{V}$ and $\omega=10^5\,\mathrm{rad/s}$
 - (e) V_{in} has a peak-to-peak amplitude of 8V and $\omega=100\,\mathrm{rad/s}$
- 3. The figure below shows a RC filter circuit. The sinusoidal input waveform has an amplitude of 2 volts and a phase angle zero at time t=0. Assume the same angular frequency $\omega=1/RC$ for all parts of this question.

- (a) Show that the output amplitude is $\sqrt{2}$ volts.
- (b) Calculate the phase difference, in radians, between the output waveform and the input. Does the output lead or lag the input?
- (c) Sketch the input and output phasors on a phasor diagram.
- (d) The capacitor is replaced by an inductor. Find an expression for the inductance L which will result in the same output amplitude.

- 4. The figure below shows a LCR filter circuit.
 - (a) Find an expression for the magnitude of the filter's gain.
 - (b) What is the gain for very low and very high frequencies? For the natural frequency
 - (c) Explain this behaviour, in terms of the individual component impedances at these frequencies.
 - (d) Hence describe what type of filter this is.
 - (e) Find an expression for the bandwidth of the filter.
 - (f) For $C=1000\,\mu\text{F},\,L=1\,\text{mH}$ and $R=10\,\Omega$, find the natural frequency and the bandwidth.
 - (g) Describe how to double the bandwidth without changing the natural frequency.

Numerical solutions and hints

- 1. Amplitude 1.41 V Phase -1.08 rad.

- 3. (b) $-\frac{\pi}{4}$ rad, (d) $L = R^2C$ 4. (b) Zero and 1, (f) 1000 and 100 rad/s.