marksphysicshelp MPH

I1	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$\log n = 0.7606 + 0.0635t$	M1	1.1a	6th
	$c = 10^{0.7606 + 0.0635t}$	M1	1.1b	Understand
	$c = 5.76 \times 1.16^t$ (3 s.f.)	A1	1.1b	exponential models in bivariate data.
		(3)		
b	a is a constant of proportionality.	A1	3.2a	6th
				Understand exponential models in bivariate data.
		(1)		
c	Extrapolation/out of the range of the data.	A1	2.4	4th
				Understand the concepts of interpolation and extrapolation.
		(1)		
				(5 marks)
	Notes			

MPH

12	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	0.05 F	B 1	2.5	3rd
	A	B1	1.1b	Draw and use tree diagrams with
	0.40 0.95 _F ,	B1	1.1b	three branches
	$0.02 \qquad F$ $0.35 \qquad B$			and/or three levels.
	0.98 F,			
	0.03 P			
	Let $F \sim \text{faulty}$			
		(3)		
b	$P(B \cap F) = 0.35 \times 0.98$	M1	1.1b	5th
	= 0.343	A1	1.1b	Understand and calculate
				conditional probabilities in the context of tree diagrams.
		(2)		
c	$P(F) = 0.4 \times 0.05 + 0.35 \times 0.02 + 0.25 \times 0.03$	M1	1.1b	5th
	= 0.0345	A1	1.1b	Understand and calculate conditional probabilities in the
				context of tree diagrams.
		(2)		
d	$P(C F) = \frac{P(C' \cap F)}{P(F)} = \frac{0.4 \times 0.05 + 0.35 \times 0.02}{0.0345} = \frac{0.027}{0.0345}$	M1	3.1b	5th
	P(F) 0.0345 0.0345	A1ft	1.2	Calculate conditional
	$0.7826 \text{ or } \frac{18}{23} \text{ (accept awrt } 0.783)$	A1	1.1b	probabilities using formulae.
		(3)		
				(10 marks)
	Notes			

MPH

13	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	5% 20% bell shaped	B1	1.2	5th Understand the basic features of the normal distribution including parameters, shape and notation.
	170, 180 on axis	B1	1.1b	
	5% and 20%	B1	1.1b	
		(3)		
b	P(X < 170) = 0.05	M1	3.3	7th
	$\frac{170 - \mu}{\sigma} = -1.6449$	B1	3.4	Find unknown means and/or standard
	$\mu = 170 + 1.6449\sigma$	B1	1.1b	deviations for
	P(X > 180) = 0.2	B1	3.4	normal distributions.
	$\mu = 180 - 0.8416\sigma$	M1	1.1b	
	Solving simultaneously gives:	A1	1.1b	
	$\mu = 176.615$ (awrt 176.6) and $\sigma = 4.021$ (awrt 4.02)	A1	1.1b	
		(7)		
c	P(All three are taller than 175 cm) = 0.656^3	M1	1.1b	5th Understand
	= 0.282 (using calculator) awrt 0.282	A1	1.1b	informally the link to probability distributions.
		(2)		
				(12 marks)
	Notes			

MPH

I 4	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	The data seems to follow an exponential distribution.	B1	2.4	6th Understand exponential models in bivariate data.
		(1)		
b	r = 0.9735 is close to 1	B1	2.2a	2nd
	which gives a strong positive correlation.	B1	2.4	Know and understand the language of correlation and regression.
		(2)		
c	Model is a good fit with a reason. For example, Very strong positive linear correlation between t and $\log_{10} p$. The transformed data points lie close (enough) to a straight line.	B2	3.2a	6th Understand exponential models in bivariate data.
		(2)		

(5 marks)

Notes

c

B0 for just stating the model is a good fit with no reason.

MPH

15	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$\frac{11}{20}$ T	B1	2.5	2nd
	20	B1	1.1b	Draw and use
	$\frac{3}{5}$ $\frac{9}{20}$ T	B1	1.1b	simple tree diagrams with two branches and two levels.
	$\frac{2}{5}$ D' $1-x$ T'			
	T = hand assignments in on time, $D =$ start assignments on the day they are issued			
		(3)		
b i	$P(T \cap D) = P(T D) \times P(D)$	M1	3.1b	5th
	$=\frac{3}{5}\times\frac{11}{20}$	A1	1.1b	Understand and calculate conditional
	$= \frac{33}{100} \text{ or } 0.33$			probabilities in the context of tree diagrams.
		(2)		
b ii	$\frac{3}{5} \times \frac{11}{20} + x \times \frac{2}{5} = \frac{2}{3}$	M1	3.1b	5th Understand and calculate
				conditional probabilities in the context of tree diagrams.
	$x = \frac{101}{120}$ or 0.841	A1	1.1b	
	$P(T' \cap D') = \frac{2}{5} \left(1 - \frac{101}{120} \right)$	M1	1.1b	
	$= \frac{19}{300} \text{ or } 0.0633 \text{ (accept awrt } 0.0633)$	A1	1.1b	
		(4)		

MPH

c	$P(T \cap D) = \frac{33}{100} \neq P(T) \times P(D) = \frac{2}{3} \times \frac{3}{5} = \frac{2}{5}$	M1	2.1	4th Understand and
	So, T and D are not statistically independent.	A1	2.4	use the definition of independence in probability calculations.
		(2)		

(11 marks)

Notes

b ii Alternative solution

$$P(T' \cap D') = 1 - P(T \cup D)$$

$$P(T \cup D) = \frac{2}{3} + \frac{3}{5} - \frac{33}{100}$$

$$=\frac{281}{300}$$

$$P(T' \cap D') = 1 - \frac{281}{300} = \frac{19}{300}$$

MPH

16	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
a	A critical value is the point (or points) on the scale of the test statistic beyond which we reject the null hypothesis.	B1	1.2	5th Understand the language of	
				hypothesis testing.	
		(1)			
b	$H_0: \rho = 0, H_1: \rho > 0$	B 1	2.5	6th	
	Critical value = 0.5494	M1	1.1b	Carry out a	
	0.714 > 0.5494 (test statistic in critical region)			hypothesis test for	
	There is evidence to reject H ₀	A1	2.2b	zero correlation.	
	There is evidence that there is a positive correlation between the number of vehicles and road traffic accidents.				
		(3)			
c	r = -7.0 + 0.02v	B1	1.2	4th	
				Make predictions	
				using the regression line	
				within the range of the data.	
		(1)			
d	Road fatalities per 100 000 population.	B1	1.2	2nd	
				Know and understand the language of correlation and regression.	
		(1)			
e	Outside the range of the data used in the model.	B1	3.5b	4th	
	or			Understand the	
	This would require extrapolation.			concepts of interpolation and extrapolation.	
		(1)			
		<u> </u>	<u>l</u>	(7 marks)	
	Notes				

17	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Moment from bus = $5000 \times 2 \times g$	M1	3.1a	5th
	$= 10000g({\rm N}{\rm m})$	A1	1.1b	Find resultant moments by
	Moment from gold = $1000 \times 12 \times g$	M1	3.1b	considering direction.
	= 12 000g (N m)	A1	1.1b	
	Moment from people = $70 \times 8 \times n \times g$	M1	3.1a	
	= 560ng (N m)	A1	1.1b	
	Total moment = $(22\ 000 - 560n)g\ (N\ m)$	A1	1.1b	
		(7)		
b	Forming an equation or inequality for n and solving to find $(n = 39.28)$	M1	1.1b	5th Solve equilibrium
	Need 40 people.	A1	3.2a	problems involving horizontal bars.
		(2)		
c	New moment from gold and extra person is $1070 \times 12 \times g(N)$	M1	3.1a	5th
	New total moment = $(22840 - 560n)g$ (N m)	M1	1.1b	Solve equilibrium problems involving horizontal bars.
	n = 40.78	A1	3.2a	
	42 people (including the extra)	A1	2.4	
		(4)		
				(13 marks)

MPH

18	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Net force is C + W	M1	3.1b	4 th
	$=$ $\begin{pmatrix} 5 \\ -1 \end{pmatrix}$	A1	1.1b	Calculate resultant forces using vectors.
		(2)		
b	Use of Newton's 2nd Law.	M1	3.1b	5th
	$\mathbf{a} = \frac{F}{m}$	M1	1.1b	Use Newton's second law to model motion in
	$= \begin{pmatrix} 50 \\ -10 \end{pmatrix}$	A1	1.1b	two directions.
		(3)		
c	$\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	1.1a	5th Use the equations
	$= \binom{1}{1}t + \frac{1}{2}\binom{50}{-10}t^2$	M1	1.1b	of motion to solve problems in familiar contexts.
	$x = t + 25t^2$	A1	1.1b	
	$y = t - 5t^2$	A1	1.1b	
		(4)		
d	Substitute $t = 10$	M1	3.1b	5th
	x = 2510	A1	1.1b	Use the equations of motion to solve
	y = -490	A1	1.1b	problems in familiar contexts.
	Distance travelled = $\sqrt{2510^2 + (-490)^2}$	M1	1.1a	
	2557.38(m) (Accept awrt 2560)	A1	3.2a	
		(5)		
				(14 marks)
	Notes			

19	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Figure 1			4th
	4 m			Calculate moments.
	x y_{80g} Force labels one mark each Allow explicit evaluation with g .	B2	2.5	
		(2)		
b	Alice: Moment = $2 \times 50 \times g$	M1	1.1b	5th
	$=100g(\mathrm{N}\mathrm{m})$	A1	1.1b	Calculate sums of
	Bob: Moment = $(2 - x) \times 80 \times g$	M1	3.4	moments.
	=80(2-x)g (N m)	A1	1.1b	
	Total clockwise moment = $20g(4x - 3)$ (N m)	A1	1.1b	
		(5)		
c	Equating to 0 and solving	M1	3.4	5th
	x = 0.75 (m)	A1	1.1b	Solve equilibrium problems involving horizontal bars.
		(2)		
d	Identifying 2 as a limit	M1	2.4	7th
	So tilts towards Alice when $0.75 < x \le 2$	A1	2.2a	Solve problems involving bodies on the point of tilting.
		(2)		
e	Any valid limitation. For example,	A1	3.5	3rd
	Pivot not a point. Alice can't sit exactly on the end. The see-saw might bend.			Understand assumptions common in mathematical modelling.
		(1)		

MPH

I10	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
a	Use of $s = ut + \frac{1}{2}at^2$	M1	1.1a	6th Resolve velocity	
	Initial velocity is $(\cos \theta, \sin \theta)$	A1	3.4	into horizontal and vertical components.	
	$x = t\cos\theta$	A1	1.1b		
	$y = t\sin\theta - 5t^2$	B1	1.1b		
		(4)			
b	Solve $y = 0$ for t	M1	3.4	5th	
	$t(\sin\theta - 5t) = 0$	A1	1.1b	Model horizontal projection under	
	$t = 0 \text{ or } t = \frac{\sin \theta}{5}$	A1	1.1b	gravity.	
	$t = 0$ is initial position so $t = \frac{\sin \theta}{5}$	M1	2.4		
	$x = \frac{\cos\theta\sin\theta}{5} = \frac{2\sin\theta\cos\theta}{10} = \frac{\sin 2\theta}{10}$	A1	1.1b		
		(5)			
c	Sketch of $\sin 2\theta$ or other legitimate method.	M1	2.2a	6th	
	Maximum is at $\theta = 45^{\circ}$	A1	2.4	Resolve velocity into horizontal and vertical components.	
		(2)			
d	Correct limitation. For example, air resistance.	B1	3.5b	3rd	
				Understand assumptions common in mathematical modelling.	
		(1)			
				(12 marks)	
	Notes				

I11	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Normal reaction Weight One correct force with correct label.	B1	2.5	3rd Draw force diagrams.
	Two more correct forces with correct labels.	B1	2.5	
		(2)		
b	Resolve vertically.	M1	1.1b	5th
	Weight = $8g$	M1	1.1b	Calculate resultant forces in
	= 78.4	M1	1.1b	perpendicular directions.
	Vertical part of normal reaction is 2 <i>R</i> cos 40	A1	1.1b	directions.
	$2R\cos 40 = 78.4$	M1	1.1b	
	Solve for <i>R</i>	M1	1.1b	
	R = 51.171 (N) accept awrt 51	A1	1.1b	
		(7)		
				(9 marks)