SECTION B: MECHANICS J

Answer ALL questions.

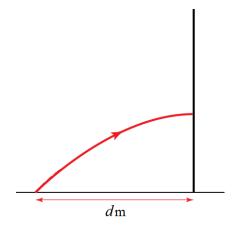
4.4 Two interlocking gears are in equilibrium. The gear on the right has a radius of 10 cm and has a loop 8 cm from the centre. The loop is to the right of, and level with the centre of the gear. A 10 kg mass hangs from the loop. The other gear has a radius of 5 cm and a loop 2 cm from the centre. The loop is to the left of, and level with the centre of the gear. A mass M kg hangs from the left loop.

Figure 4 10 cm 8 cm 10kg

Find the value of M.

- **5.1**An object rests on a rough surface and is pushed horizontally with force of 6 N. The mass of the object is 5 kg and the coefficient of friction between the object and the surface is 0.3.
 - a Draw a diagram showing all the forces acting on the object. Describe each of the forces using words and calculate their values.
 - **b** The horizontal force acting on the object is increased to *P* N. Find the largest value of P for which the object does not slip.
- **6.2** A ball, modelled as a particle moving freely under gravity, is launched at 2 m s⁻¹ from the origin at angle 45° above the horizontal. (In this question, take $g = 10 \text{ m s}^{-2}$)
 - Find the coordinates of the particle when it is at its maximum height.

On another occasion, the projectile is again is launched at 2 m s⁻¹ from the origin at angle 45° above the horizontal. It travels a horizontal distance d m before hitting a vertical wall and then falling straight to the ground.


Figure 2

(10 marks)

(6 marks)

(3 marks)

(10 marks)

b Find the maximum height attained if d = 0.1. Give your answer in cm.

(5 marks)

c Describe a possible limitation of this model.

(1 marks)

7.2 Three forces, F_1 , F_2 and F_3 , act on a circular lamina of radius 5 cm. The origin is at the centre of the lamina.

$$\mathbf{F}_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \mathbf{N}$$
 acts at the point $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ cm

$$\mathbf{F}_2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
N acts at the point $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$ cm

$$\mathbf{F}_3 = \begin{pmatrix} f \\ 0 \end{pmatrix} \mathbf{N}$$
 acts at the point $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$ cm.

The net force on the lamina is zero.

a Find the value of f.

(2 marks)

b Find the total moment about the origin. Give your answer in N m.

(4 marks)

- **8.1**The position of a particle is \mathbf{r} metres. Initially $\mathbf{r} = \mathbf{i}$. The velocity of the particle at time t seconds is \mathbf{v} m s⁻¹ where $\mathbf{v} = t \mathbf{i} + 3t^2 \mathbf{j}$
 - **a** Find **r** in terms of *t*.

(3 marks)

b Find the acceleration of the particle when t = 4.

(4 marks)

c Find the position of the particle when it is 1 m from the *x*-axis.

(2 marks)