PURE MATHEMATICS A level Practice Papers

PAPER L MARK SCHEME

1a	Makes an attempt to substitute $k = 1$, $k = 2$ and $k = 4$ into $a_k = 2^k + 1$, $k 0 1$	M1
Sl	hows that $a_1 = 3$, $a_2 = 5$ and $a_4 = 17$ and these are prime numbers.	A1
		(2 marks)
1b	Substitutes a value of k that does not yield a prime number.	A1
Fo	or example, $a_3 = 9$ or $a_5 = 33$	
C	oncludes that their number is not prime.	B1
Fo	or example, states that $9 = 3 \times 3$, so 9 is not prime.	
		(2 marks)
	TOTAL: 4 marks	

2	Recognises the need to write $\sin^3 x \equiv \sin x \left(\sin^2 x\right)$	M1
	Selects the correct trigonometric identity to write $\sin x \left(\sin^2 x\right) = \sin x \left(1 - \cos^2 x\right)$.	M1
	Could also write $\sin x - \sin x \cos^2 x$	
	Makes an attempt to find $\int (\sin x - \sin x \cos^2 x) dx$	M1
	Correctly states answer $-\cos x + \frac{1}{3}\cos^3 x + C$	A1
	TOTAL: 4 marks	(4 marks)

3	Begins the proof by assuming the opposite is true.	B 1
'A	ssumption: given a rational number a and an irrational number b , assume that $a-b$ is rational.	
Se	ts up the proof by defining the different rational and irrational numbers.	M1
Th	the choice of variables does not matter. Let $a = \frac{m}{n}$	
As	s we are assuming $a - b$ is rational, let $a - b = \frac{p}{q}$ So $a - b = \frac{p}{q} \Rightarrow \frac{m}{n} - b = \frac{p}{q}$	
	elves $\frac{m}{n} - b = \frac{p}{q}$ to make b the subject and rewrites the resulting expression as a single fraction:	M1
m n	$-b = \frac{p}{q} \Rightarrow b = \frac{m}{n} - \frac{p}{q} = \frac{mq - pn}{nq}$	
M	akes a valid conclusion.	B1
b	$=\frac{mq-pn}{nq}$, which is rational, contradicts the assumption b is an irrational number.	
Th	herefore the difference of a rational number and an irrational number is irrational.	
	TOTAL: 4 marks	(4 marks)

Differentiates $x = \sec 4y$ to obtain $\frac{dx}{dy} = 4\sec 4y \tan 4y$	M1
Writes $\frac{dy}{dx} = \frac{1}{4 \sec 4y \tan 4y}$	A1
	(2 marks)
Use the identity $\tan^2 A + 1 = \sec^2 A$ to write $\tan 4y = \sqrt{\sec^2 4y - 1} = \sqrt{x^2 - 1}$	M1
Attempts to substitute $\sec 4y = x$ and $\tan 4y = \sqrt{x^2 - 1}$ into $\frac{dy}{dx} = \frac{1}{4 \sec 4y \tan 4y}$	M1
Correctly substitutes to find $\frac{dy}{dx} = \frac{1}{4x\sqrt{x^2 - 1}}$ and states $k = \frac{1}{4}$	A1
	(3 marks)
TOTAL: 5 marks	

5	Writes $\tan x$ and $\sec x$ in terms of $\sin x$ and $\cos x$. eg $\frac{\tan x - \sec x}{1 - \sin x} = (\frac{\sin x}{\cos x} - \frac{1}{\cos x}) \div (1 - \sin x)$	M1
	Manipulates the expression to find $\left(\frac{\sin x - 1}{\cos x}\right) \times \left(\frac{1}{1 - \sin x}\right)$	M1
	Simplifies to find $-\frac{1}{\cos x} = -\sec x$	A1
		(3 marks)
5b	States that $-\sec x = \sqrt{2}$ or $\sec x = -\sqrt{2}$	B1
	Writes that $\cos x = -\frac{1}{\sqrt{2}}$ or $x = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$	M1
	Finds $x = \frac{3\pi}{4}, \frac{5\pi}{4}$	A1
		(3 marks)
	TOTAL: 6 marks	

States $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{x+h-x}$	M1
Makes correct substitutions: $f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$	M1
Uses the appropriate trigonometric addition formula to write: $f'(x) = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$	M1
Groups the terms appropriately $f'(x) = \lim_{h \to 0} \left(\left(\frac{\cos h - 1}{h} \right) \sin x + \left(\frac{\sin h}{h} \right) \cos x \right)$	A1
	(4 marks)
Explains that as $h \to 0$, $\frac{\cos h - 1}{h} \to 0$ and $\frac{\sin h}{h} \to 1$	M1
Concludes that this leaves $0 \times \sin x + 1 \times \cos x$ So if $f(x) = \sin x$, $f'(x) = \cos x$	os x A1
	(2 marks)
TOTAL: 6 marks	

Makes an attempt to set up a long division.	M1
For example: $x^2 - 2x - 15 \sqrt{x^4 + 2x^3 - 29x^2 - 48x + 90}$ is seen.	
Award 1 accuracy mark for each of the following:	A3
x^2 seen, $4x$ seen, -6 seen.	
$x^{2} + 4x - 6$ $x^{2} - 2x - 15) x^{4} + 2x^{3} - 29x^{2} - 47x + 77$ $x^{4} - 2x^{3} - 15x^{2}$	
$-4x^3 - 14x^2 - 47x$	
$4x^3 - 8x^2 - 60x$	
$-6x^2 + 13x + 77$	
$-6x^2 + 12x + 90$	
x-13	
Equates the various terms to obtain the equation:	M1
x-13 = V(x-5) + W(x+3)	
Equating the coefficients of x: $V + W = 1$	
Equating constant terms: $-5V + 3W = -13$	
Multiplies one or or both of the equations in an effort to equate one of the two variables.	M1
Finds $W = -1$ and $V = 2$.	A1
TOTAL: 7 marks	

8a States the range is $y \ddot{O} - 5$ or $f(x) \ddot{O} - 5$	B1
	(1 mark)
Recognises that $3(x-4)-5=-\frac{1}{3}x+k$ and $-3(x-4)-5=-\frac{1}{3}x+k$	M1
Makes an attempt to solve both of these equations.	M1
Correctly states $\frac{10}{3}x = k + 17$. Equivalent version is acceptable.	A1
Correctly states $-\frac{8}{3}x = k - 7$. Equivalent version is acceptable.	A1
Makes an attempt to substitute one equation into the other in an effort to solve for k .	M1 ft
For example, $x = \frac{3}{10}(k+17)$ and $-\left(\frac{8}{3}\right)\left(\frac{3}{10}\right)(k+17) = k-7$ is seen.	
Correctly solves to find $k = -\frac{11}{3}$	A1 ft
States the correct range for k . $k > -\frac{11}{3}$	B1
	(2 marks)
TOTAL: 8 marks	

NOTES 8b: Award ft marks for a correct method using an incorrect answer from earlier in the question.

Alternative Method

Draws line with gradient $-\frac{1}{3}$ passing through vertex and calculates $k = -\frac{11}{3}$, so answer is $k > -\frac{11}{3}$

M1: States the x-coordinate of the vertex of the graph is 4

M1: States the y-coordinate of the vertex of the graph is -5

M1: Writes down the gradient of $-\frac{1}{3}$ or implies it later in the question.

M1: Attempts to use $y - y_1 = m(x - x_1)$ with $(x_1, y_1) = (4, -5)$ and $m = -\frac{1}{3}$

A1: Finds $y = -\frac{1}{3}x - \frac{11}{3}$ o.e.

B1: States the correct range for k: $k > -\frac{11}{3}$

Makes an attempt to rearrange $x = \frac{1+4t}{1-t}$ to make t the subject.	M1
For example, $x - xt = 1 + 4t$ is seen.	
Correctly states $t = \frac{x-1}{4+x}$	A1
Makes an attempt to substitute $t = \frac{x-1}{4+x}$ into $y = \frac{2+bt}{1-t}$	M1
For example, $y = \frac{2 + \frac{bx - b}{x + 4}}{1 - \frac{x - 1}{x + 4}} = \frac{\frac{2x + 8 + bx - b}{x + 4}}{\frac{x + 4 - x + 1}{x + 4}}$ is seen.	
Simplifies the expression showing all steps. For example, $y = \frac{2x + 8 + bx - b}{5} = \left(\frac{2 + b}{5}\right)x + \left(\frac{8 - b}{5}\right)$	A1
	(4 marks
Interprets the gradient of line being -1 as $\frac{2+b}{5} = -1$ and finds $b = -7$	M1
Substitutes $t = -1$ to find $x = -\frac{3}{2}$ and $y = \frac{9}{2}$	M1
And substitutes $t = 0$ to find $x = 1$ and $y = 2$	
Makes an attempt to use Pythagoras' Theorem to find the length of the line: $\sqrt{\left(\frac{5}{2}\right)^2 + \left(\frac{5}{2}\right)^2}$	M1
Correctly finds the length of the line segment, $\frac{5\sqrt{2}}{2}$ or states $a = \frac{5}{2}$	A1
	(4 marks
TOTAL: 8 marks	

Makes an attempt to find $\int \left(\frac{e^{2x}}{e^{2x}-1}\right) dx$	M1
Writing $\int \frac{f'(x)}{f(x)} dx = \ln[f(x)]$ or writing $\ln(e^{2x} - 1)$ constitutes an attempt.	
Correctly states $\int \left(\frac{e^{2x}}{e^{2x}-1}\right) dx = \frac{1}{2} \ln\left(e^{2x}-1\right) (+C)$	A1
Makes an attempt to substitute the limits $x = \ln b$ and $x = \ln 2$ into $\frac{1}{2} \ln \left(e^{2x} - 1 \right)$	M1 ft
For example, $\frac{1}{2}\ln(e^{2\ln b}-1)$ and $\frac{1}{2}\ln(e^{2\ln 2}-1)$ is seen.	
Uses laws of logarithms to begin to simplify the expression.	M1 ft
Either $\frac{1}{2}\ln(b^2-1)$ or $\frac{1}{2}\ln(2^2-1)$ is seen.	
Correctly states the two answers as $\frac{1}{2}\ln(b^2-1)$ and $\frac{1}{2}\ln 3$	A1 ft
States that $\frac{1}{2} \ln(b^2 - 1) - \frac{1}{2} \ln 3 = \ln 4$	M1 ft
Makes an attempt to solve this equation.	M1 ft
For example, $\ln\left(\frac{b^2-1}{3}\right) = 2\ln 4$ is seen.	
Correctly states the final answer $b = 7$	A1 ft
TOTAL: 8 marks	

NOTES:

Student does not need to state '+C' in an answer unless it is the final answer to an indefinite integral.

Award ft marks for a correct answer using an incorrect initial answer.

Recognises that it is a geometric series with a first term $a = 100$ and common ratio $r = 11a$	1.05 M1
Attempts to use the sum of a geometric series. For example, $S_9 = \frac{100(1-1.05^9)}{1-1.05}$ or	M1*
$S_9 = \frac{100(1.05^9 - 1)}{1.05 - 1}$ is seen.	
Finds $S_9 = £1102.66$	A1
	(3 marks)
States $\frac{100(1.05^n - 1)}{1.05 - 1} > 6000 \text{ or } \frac{100(1 - 1.05^n)}{1 - 1.05} > 6000$	M1
Begins to simplify. $1.05^n > 4 \text{ or } -1.05^n < -4$	M1
Applies law of logarithms correctly $n \log 1.05 > \log 4$ or $-n \log 1.05 < -\log 4$	M1
States $n > \frac{\log 4}{\log 1.05}$	A1
	(4 marks)
Uses the sum of an arithmetic series to state $\frac{29}{2} \left[100 + (28)d \right] = 6000$	M1
Solves for d . $d = £11.21$	A1
	(2 marks)
TOTAL: 9 marks	

NOTES 11a:

M1

Award mark if attempt to calculate the amount of money after 1, 2, 3,....,8 and 9 months is seen.

12a	Makes an attempt to find the resultant force by adding the three force vectors together.	M1
Fi	ands $R = (6\mathbf{i} + 3\mathbf{j} + 3\mathbf{k})N$	A1
		(2 marks)
12b	States $F = ma$ or writes $(6\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}) = 3(a)$	M1
Fi	ands $a = (2\mathbf{i} + \mathbf{j} + \mathbf{k}) \text{ms}^{-2}$	A1
		(2 marks)
12c	Demonstrates an attempt to find $ a $	M1
Fo	or example, $ a = \sqrt{(2)^2 + (1)^2 + (1)^2}$	
Fi	$ a = \sqrt{6} \mathrm{m s^{-2}}$	A1
		(2 marks)
12d	$\int \text{States } s = ut + \frac{1}{2}at^2$	M1
М	Takes an attempt to substitute values into the equation. $s = (0)(10) + \frac{1}{2}(\sqrt{6})(10)^2$	M1 ft
Fi	ands $S = 50\sqrt{6} \mathrm{m}$	A1 ft
		(3 marks)
	TOTAL: 9 marks	

NOTES: 12d

Award ft marks for a correct answer to part d using their incorrect answer from part c.

13a Finds $h(19.3) = (+)0.974$ and $h(19.4) = -0.393$	M1
Change of sign and continuous function in the interval $[19.3, 19.4] \Rightarrow$ root	A1
	(2 marks)
13b Makes an attempt to differentiate $h(t)$	M1
Correctly finds $h'(t) = \frac{40}{t+1} + 8\cos\left(\frac{t}{5}\right) - \frac{1}{2}t$	A1
Finds $h(19.35) = 0.2903$ and $h'(19.35) = -13.6792$	M1
Attempts to find x_1	M1
$x_1 = x_0 - \frac{h(x_0)}{h'(x_0)} \Rightarrow x_1 = 19.35 - \frac{0.2903}{-13.6792}$	
Finds $x_1 = 19.371$	A1
	(5 marks)
Demonstrates an understanding that $x = 19.3705$ and $x = 19.3715$ are the two values to be calculated.	M1
Finds $h(19.3705) = (+)0.0100$ and $h(19.3715) = -0.00366$	M1
Change of sign and continuous function in the interval $[19.3705, 19.3715] \Rightarrow$ root	A1
	(3 marks)
TOTAL: 10 marks	

NOTES: 13a

Minimum required is that answer states there is a sign change in the interval and that this implies a root in the given interval.

Correctly writes $6(2+3x)^{-1}$ as: $6\left(2^{-1}\left(1+\frac{3}{2}x\right)^{-1}\right)$ or $3\left(1+\frac{3}{2}x\right)^{-1}$	M1
Completes the binomial expansion: $3\left(1+\frac{3}{2}x\right)^{-1} = 3\left(1+(-1)\left(\frac{3}{2}\right)x + \frac{(-1)(-2)\left(\frac{3}{2}\right)^2x^2}{2} + \dots\right)$	M1
Simplifies to obtain $3 - \frac{9}{2}x + \frac{27}{4}x^2 + \dots$	A1
Correctly writes $4(3-5x)^{-1}$ as: $4\left(3^{-1}\left(1-\frac{5}{3}x\right)^{-1}\right)$ or $\frac{4}{3}\left(1-\frac{5}{3}x\right)^{-1}$	M1
Completes the binomial expansion: $\frac{4}{3} \left(1 - \frac{5}{3} x \right)^{-1} = \frac{4}{3} \left(1 + (-1) \left(-\frac{5}{3} \right) x + \frac{(-1)(-2) \left(-\frac{5}{3} \right)^2 x^2}{2} + \dots \right)$	M1
Simplifies to obtain $\frac{4}{3} + \frac{20}{9}x + \frac{100}{27}x^2 +$	A1
Simplifies by subtracting to obtain $\frac{5}{3} - \frac{121}{18}x + \frac{329}{108}x^2 + \dots$ The need to subtract, or the subtracting shown, must be seen in order to award the mark.	A1
	(7 mark
Makes an attempt to substitute $x = 0.01$ into $f(x)$. For example, $\frac{6}{2+3(0.01)} - \frac{4}{3-5(0.01)}$ is seen.	M1
States the answer 1.5997328	A1
	(2 mark
Makes an attempt to substitute $x = 0.01$ into $\frac{5}{3} - \frac{121}{18}x - \frac{329}{108}x^2 + \dots$	M1 ft
States the answer 1.59974907 Accept awrt 1.60.	M1 ft
Finds the percentage error: 0.0010%	A1 ft
	(3 mark
TOTAL: 12 marks	

NOTES:

14a

If one expansion is correct and one is incorrect, or both are incorrect, award the final accuracy mark if they are subtracted correctly.

14c

Award all 3 marks for a correct answer using their incorrect answer from part a.

(TOTAL: 100 MARKS)