4 Series

The following are examples of **series** or **series sums**.

$$\sqrt{2} = 1 + \frac{4}{10} + \frac{1}{100} + \frac{4}{1000} + \dots$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots \quad \text{if} \quad |x| < 1$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \tag{92}$$

Definition (Series):

A **series** (or **series sum**) is the infinite sum of a real sequence (a_n) . It is denoted, $\sum_{k=1}^{\infty} a_k$. We term the a_n the summands.

Note that we may define $b_n = a_{n-N+1}$ and then,

$$\sum_{k=N}^{\infty} b_k = \sum_{k=1}^{\infty} a_k \tag{93}$$

so we may write a sum 'starting' at any number. For example,

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \text{if} \quad |x| < 1 \tag{94}$$

The value of a series is defined by our notion of convergence.

Definition (Partial sum):

The *n*'th **partial sum** of a series $\sum_{k=1}^{\infty} a_k$ is denoted S_n and is the sum of the first *n* terms, ie.

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + \ldots + a_n \tag{95}$$

Example: for the series $\sqrt{2} = 1 + \frac{4}{10} + \frac{1}{100} + \frac{4}{1000} + \text{ then } S_3 = 1.41.$

The partial sums form a sequence (S_n) .

4.1 Convergent series

Definition (value of a series):

If for a series $\sum_{k=1}^{\infty} a_k$ the sequence of partial sums, (S_n) , converges so $S = \lim_{n\to\infty} S_n$, then we say the **series converges** (or the **series is convergent**), and its value is S, so,

$$S = \sum_{k=1}^{\infty} a_k \tag{96}$$

If (S_n) does not converge then the series is **divergent**.

Recall from the example sheets you proved (by induction);

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x} \tag{97}$$

Proposition 4.1. Geometric series

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \quad \text{if} \quad |x| < 1 \tag{98}$$

Proof. Define the partial sums,

$$S_n = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - x^{n+1} \cdot \frac{1}{1 - x}$$
 (99)

by the previous exercise. Now if |x|<1 then $x^{n+1}\to 0$ as $n\to\infty$, and hence $\frac{x^{n+1}}{1-x}\to 0$ in this limit leaving,

$$S_n \to \frac{1}{1-x}$$
 as $n \to \infty$ (100)

Proposition 4.2. If $x = \sum_{k=1}^{\infty} x_k$ and $y = \sum_{k=1}^{\infty} y_k$ are convergent series, then,

$$a \cdot x + b \cdot y = \sum_{k=1}^{\infty} (a \cdot x_k + b \cdot y_k)$$
 (101)

for any $a, b \in \mathbb{R}$.

Proof. Consider the partial sums $S_n = \sum_{k=1}^n x_k$ and $T_n = \sum_{k=1}^n y_k$. Then these converge, $S_n \to x$ and $T_n \to y$. Now consider,

$$U_n = \sum_{k=1}^{n} (ax_k + by_k)$$
 (102)

so $U_n = aS_n + bT_n$ for any $n \in \mathbb{N}^+$. From our previous results on sequences, $U_n \to ax + by$ as $n \to \infty$.

Convergence of a series depends only on the **tail** of the sequence of partial sums (not the first terms - or **head**). For example,

$$5 + 19 - 2^{29} + 1 + \frac{1}{2} - 15^{2^{2^2}} + \dots + 3 + \sum_{k=1}^{\infty} \frac{1}{2^k}$$

$$10^{2000000} \text{ terms}$$
(103)

is a convergent series.

Proposition 4.3. The series $\sum_{k=1}^{\infty} \frac{1}{k}$ is divergent.

Proof. Firstly we see for n > 0;

$$S_{2^{n}} = \sum_{k=1}^{2^{n}} \frac{1}{k} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$$

$$+ \left(\frac{1}{9^{p}} + \frac{1}{10^{p}} + \dots + \frac{1}{16^{p}}\right) + \dots$$

$$\vdots$$

$$+ \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^{n}}\right)$$

$$2^{n-1} \text{ terms}$$

$$\geq 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \dots$$

$$+ \left(\frac{1}{16^{p}} + \frac{1}{16^{p}} + \dots + \frac{1}{16^{p}}\right) + \dots$$

$$\vdots$$

$$+ \left(\frac{1}{2^{n}} + \dots + \frac{1}{2^{n}}\right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} = 1 + \frac{n}{2}$$

$$n \text{ terms}$$

$$(104)$$

Thus the partial sums (S_{2^n}) are unbounded from above as $n \to \infty$. Thus the sequence (S_n) is also unbounded above and diverges as $n \to \infty$.

Proposition 4.4. If a series $\sum_{k=1}^{\infty} a_k$ has positive terms, $a_n \geq 0$ and (S_n) is bounded above then the series converges.

Proof. If $a_n \geq 0$ the (S_n) is an increasing sequence. An increasing sequence that is bounded above converges.

If we can show (S_n) is increasing and bounded above then we learn the series converges. However we don't learn what value it converges to.

Proposition 4.5. The series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ is convergent for p > 1. (This is the Riemann zeta function $\zeta(p)$).

Proof. Firstly we see for n > 0;

$$\sum_{k=1}^{2^{n}-1} \frac{1}{k^{p}} = 1 + \left(\frac{1}{2^{p}} + \frac{1}{3^{p}}\right) + \left(\frac{1}{4^{p}} + \frac{1}{5^{p}} + \frac{1}{6^{p}} + \frac{1}{7^{p}}\right) + \dots$$

$$+ \left(\frac{1}{8^{p}} + \frac{1}{9^{p}} + \dots + \frac{1}{15^{p}}\right) + \dots$$

$$\vdots$$

$$+ \left(\frac{1}{(2^{n-1})^{p}} + \dots + \frac{1}{(2^{n}-1)^{p}}\right)$$

$$2^{n-1} \text{ terms}$$

$$\leq 1 + \left(\frac{1}{2^{p}} + \frac{1}{2^{p}}\right) + \left(\frac{1}{4^{p}} + \frac{1}{4^{p}} + \frac{1}{4^{p}} + \frac{1}{4^{p}}\right) + \dots$$

$$+ \left(\frac{1}{8^{p}} + \frac{1}{8^{p}} + \dots + \frac{1}{8^{p}}\right) + \dots$$

$$\vdots$$

$$+ \left(\frac{1}{(2^{n-1})^{p}} + \dots + \frac{1}{(2^{n-1})^{p}}\right)$$

$$= 1 + \frac{2}{2^{p}} + \frac{4}{4^{p}} + \frac{8}{8^{p}} + \dots + \frac{2^{n-1}}{2^{p(n-1)}}$$

$$= 1 + \frac{1}{2^{p-1}} + \frac{1}{2^{2(p-1)}} + \frac{1}{2^{3(p-1)}} + \dots + \frac{1}{2^{(n-1)(p-1)}}$$

$$= \frac{1 - \left(\frac{1}{2^{(p-1)}}\right)^{n}}{1 - \frac{1}{2^{(p-1)}}}$$
(105)

Now since p > 1 then $\frac{1}{2^{(p-1)}} < 1$ so,

$$\sum_{k=1}^{2^{n}-1} \frac{1}{k^{p}} \le \frac{1}{1 - \frac{1}{2^{(p-1)}}} \tag{106}$$

Now since $2^n - 1 \ge n$ for any $n \in \mathbb{N}^+$ then,

$$S_n \le S_{2^n - 1} \le \frac{1}{1 - \frac{1}{2(p - 1)}} \tag{107}$$

Thus the sequence (S_n) is bounded. Since $a_n > 0$ (S_n) is increasing. Hence it must converge.

Lemma 4.1. (Simple comparison test I)

Let $\sum_{k=1}^{\infty} b_k$ be a convergent series such that $0 \le b_k$. Then the series $\sum_{k=1}^{\infty} a_k$ converges if $0 \le a_k \le b_k$ for all $k \in \mathbb{N}^+$.

Proof. Consider the partial sums,

$$S_n = \sum_{k=1}^n a_k , \quad T_n = \sum_{k=1}^n b_k$$
 (108)

Then both (S_n) and (T_n) are both **increasing** sequences and $S_n \leq T_n$ for all $n \in \mathbb{N}^+$.

Now since $\sum_{k=1}^{\infty} a_k$ converges there exists $T \in \mathbb{R}$ such that $T_n \to T$ as $n \to \infty$. The sequence (T_n) is bounded by T and hence so is (S_n) .

So (S_n) is an increasing sequence that is bounded above, so it converges. \square

Lemma 4.2. (Simple comparison test II) Let $\sum_{k=1}^{\infty} b_k$ be a divergent series such that $0 \leq b_k$. Then the series $\sum_{k=1}^{\infty} a_k$ diverges if $0 \leq b_k \leq a_k$ for all $k \in \mathbb{N}^+$.

The proof is left as an exercise.

4.2 Tests of convergence

We have seen above in the case where $a_n \geq 0$ and (S_n) is bounded then the series converges. Suppose that the summands a_n are not positive - what can we say more generally about convergence? In fact there are a number of 'tests' of convergence.

Since we don't know whether a given series converges, and what the limit of (S_n) is, a powerful method to deal with series is observing convergence is equivalent to (S_n) being a Cauchy sequence. Recall Cauchy sequences are useful as they are equivalent to convergent sequences, but do not explicitly refer to the limit.

Proposition 4.6. (Cauchy convergence test)

A series is convergent if and only if for any $\epsilon > 0$ there exists N such that,

$$\left| \sum_{k=m}^{n} a_k \right| < \epsilon \tag{109}$$

for all $n \ge m > N$.

Proof. A series is convergent iff the partial sums (S_n) are a convergent sequence. Hence it is convergent iff (S_n) is a Cauchy sequence.

Let $\epsilon > 0$. If (S_n) is Cauchy there exists N such that for all n, m' > N such that $|S_n - S_{m'}| < \epsilon$. Take n > m', then,

$$S_n - S_{m'} = \sum_{k=m'+1}^n a_k \tag{110}$$

So taking m = m' + 1, then for all $n \ge m > N$,

$$\left| \sum_{k=m}^{n} a_k \right| < \epsilon \tag{111}$$

Corollary 4.1. A necessary, but not sufficient, condition for convergence is;

$$|a_n| \to 0 \quad \text{as} \quad n \to \infty$$
 (112)

Note: If (a_k) does not converge to zero, the series $\sum_{k=1}^{\infty} a_k$ does not converge.

Proof. That this is necessary for a convergent series follows directly from proposition 4.6 above taking the case n = m.

That it is not sufficient is shown by the example $\sum_{k=1}^{\infty} \frac{1}{k}$, which as $a_n \to 0$ as $n \to \infty$ but is divergent.

Example: The series $\sum_{k=0}^{\infty} (-1)^k$ is divergent since $a_n \neq 0$ as $n \to \infty$.

In the case $a_n \geq 0$, we required boundedness of (S_n) to show convergence. However, in an 'alternating' series where the signs of a_n alternate, convergence is automatic if the norms $|a_n|$ decrease with n.

Lemma 4.3. (Alternating series test)

Let (b_k) be a decreasing sequence such that $b_k \to 0$ as $k \to \infty$. Then the 'alternating' series,

$$\sum_{k=0}^{\infty} (-1)^{k-1} b_k = b_1 - b_2 + b_3 - b_4 + \dots$$
 (113)

converges.

Note: $b_k \geq 0$

Proof. We observe $0 \le b_n - b_{n+1}$ for all n as (b_n) is decreasing.

Consider any n > m and the sum; $I = b_{m+1} - b_{m+2} + b_{m+3} - \dots b_n$.

If the number of terms is even we may write;

$$I = b_{m+1} - (b_{m+2} - b_{m+3}) - \dots - (b_{n-2} - b_{n-1}) - b_n \le b_{m+1}$$
 (114)

or write,

$$I = (b_{m+1} - b_{m+2}) + (b_{m+3} - b_{m+4}) + \dots + (b_{n-1} - b_n) > 0$$
 (115)

On the other hand if the number of terms is odd;

$$I = b_{m+1} - (b_{m+2} - b_{m+3}) - \dots - (b_{n-1} - b_n) \le b_{m+1}$$
 (116)

or write,

$$I = (b_{m+1} - b_{m+2}) + (b_{m+3} - b_{m+4}) + \ldots + (b_{n-2} - b_{n-1}) + b_n \ge 0 \quad (117)$$

Hence we see for any n > m;

$$0 \le b_{m+1} - b_{m+2} + b_{m+3} - \dots b_n \le b_{m+1} \tag{118}$$

Let $\epsilon > 0$. Since $b_n \to 0$ as $n \to \infty$ there exists N such that for all k > N then $|b_k| = b_k < \epsilon$.

So for any n > m > N then we have,

$$|S_n - S_m| = |(b_1 - b_2 + b_3 - \dots b_n) - (b_1 - b_2 + b_3 - \dots b_m)|$$

= $|b_{m+1} - b_{m+2} + b_{m+3} - \dots b_n| \le b_{m+1} < \epsilon$ (119)

Thus (S_n) is Cauchy and converges.

Corollary 4.2. The sequence,

 $\sum_{k=0}^{\infty} \frac{(-1)^{k-1}}{k} \tag{120}$

converges.

Note: In fact this converges to $\ln 2$.

Lemma 4.4. (Comparison test)

Let $\sum_{k=1}^{\infty} b_k$ be a convergent series such that $0 \le b_k$. Then the series $\sum_{k=1}^{\infty} a_k$ converges if there exists $N \in \mathbb{N}^+$ such that $|a_k| \le b_k$ for all $k \ge N$.

Note: Before we only had this if $a_k > 0$. Also this now only applies to the tail of the series.

Proof. Let $\epsilon > 0$. Take S_n and T_n to be the partial sums for $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ respectively. Since $\sum_{k=1}^{\infty} b_k$ converges, then (T_n) is Cauchy so there exists M such that for any n > m > M,

$$\left| \sum_{k=m}^{n} b_k \right| = \sum_{k=m}^{n} b_k < \epsilon \tag{121}$$

Let may choose $M \geq N$. Now,

$$|S_{n} - S_{m}| = |a_{m+1} + a_{m+2} + \dots + a_{n}|$$

$$\leq |a_{m+1}| + |a_{m+2}| + \dots + |a_{n}|$$

$$\leq b_{m+1} + b_{m+2} + \dots + b_{n} = \sum_{k=0}^{n} b_{k} < \epsilon$$
(122)

Hence (S_n) is Cauchy, so $\sum_{k=1}^{\infty} a_k$ converges.

Definition (absolute convergence):

A series $\sum_{k=1}^{\infty} a_k$ converges absolutely (or is absolutely convergent) if $\sum_{k=1}^{\infty} |a_k|$ converges.

Example: The sum $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ converges but is not absolutely convergent.

Clearly this example illustrates a convergent series need not be absolutely convergent. The converse is true however.

Lemma 4.5. An absolutely convergent series is convergent.

Proof. We assume $\sum_{k=1}^{\infty} |a_k|$ converges. Take $b_k = |a_k|$, and apply the Comparison test, comparing $\sum_{k=1}^{\infty} a_k$ to the convergent $\sum_{k=1}^{\infty} b_k$, $b_k \ge 0$.

Since $|a_k| = b_k$ this implies $\sum_{k=1}^{\infty} a_k$ converges.

Lemma 4.6. (The root test)

Let $\sum_{k=1}^{\infty} a_k$ be a series and let $x_n = |a_n|^{\frac{1}{n}}$ for all $n \in \mathbb{N}^+$. Suppose that (x_n) is a convergent sequence. Then if;

- $x_n \to x$ as $n \to \infty$ and x > 1, then $\sum_{k=1}^{\infty} a_k$ is divergent.
- $x_n \to x$ as $n \to \infty$ and x < 1, then $\sum_{k=1}^{\infty} a_k$ is convergent.
- $x_n \to 1$ as $n \to \infty$ then the test is inconclusive.

Proof. Let us consider the cases.

Case 1: Suppose $x_n \to x$ as $n \to \infty$ and x > 1. Then choose $\rho \in \mathbb{R}$ such that $1 < \rho < x$ and let $\epsilon = x - \rho$.

Now (x_n) is a convergent sequence, so there exists $N \in \mathbb{N}^+$ such that for n > N then $|x_n - x| < \epsilon$.

Hence for all n > N then $x_n > \rho$, and so $|a_n| > \rho^n > 1$. Thus (a_n) does not tend to zero, and so the series cannot converge.

Case 2: Suppose $x_n \to x$ as $n \to \infty$ and x < 1. Choose $r \in \mathbb{R}$ such that 0 < x < r < 1 and let $\epsilon = r - x$.

Then there exists $N \in \mathbb{N}^+$ such that for n > N then $|x_n - x| < \epsilon$ and hence $x_n < r$.

Thus for all n > N then $|a_n| < r^n$.

Then by the comparison test, comparing $\sum_{n=1}^{\infty} a^n$ to $\sum_{n=1}^{\infty} r^n$ (which converges since 0 < r < 1) for the terms n > N we see convergence.

Case 3: Consider two series;

- $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges. Note $\left(\frac{1}{k}\right)^{\frac{1}{k}} \to 1$ as $k \to \infty$.
- $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ converges. Note $\left| \frac{(-1)^{k-1}}{k} \right|^{\frac{1}{k}} = \left(\frac{1}{k} \right)^{\frac{1}{k}} \to 1$ as $k \to \infty$.

Thus both convergence and divergence is possible for $|a_k|^{1/k} \to 1$.

Lemma 4.7. (The ratio test)

Let $\sum_{k=1}^{\infty} a_k$ be a series and let $y_n = \left| \frac{a_{n+1}}{a_n} \right|$, for all $n \in \mathbb{N}^+$. Then if,

- $y_n \to y$ as $n \to \infty$ and y > 1 then $\sum_{k=1}^{\infty} a_k$ diverges.
- $y_n \to y$ as $n \to \infty$ and y < 1 then $\sum_{k=1}^{\infty} a_k$ is convergent.
- $y_n \to 1$ as $n \to \infty$ then the test is inconclusive.

Proof. The proof is very similar to the root test.

Case 1: Suppose $y_n \to y$ as $n \to \infty$ and y > 1. Then choose $\rho \in \mathbb{R}$ such that $1 < \rho < y$. Then there exists $N \in \mathbb{N}^+$ such that for n > N then $y_n > \rho$.

Hence for all n > N then,

$$\left| \frac{a_{n+1}}{a_n} \right| > \rho \tag{123}$$

so that, $|a_{n+1}| > |a_n|$. Thus for n > N the sequence $(|a_n|)$ is strictly increasing, so $|a_{n+1}| > |a_{N+1}|$ for all n > N, and so the sequence (a_n) cannot tend to zero, and so the series cannot converge.

Case 2: Suppose $y_n \to y$ as $n \to \infty$ and y < 1. Then choose $r \in \mathbb{R}$ such that y < r < 1. Then there exists $N \in \mathbb{N}^+$ such that for n > N then $y_n < r$.

Then,
$$y_{N+1} = \left| \frac{a_{N+2}}{a_{N+1}} \right| < r$$
 so that $|a_{N+2}| < r|a_{N+1}|$.

Similarly, $|a_{N+3}| < r|a_{N+2}| < r^2|a_{N+1}|$, and so on, so we see,

$$|a_k| < r^{k-(N+1)}|a_{N+1}| \text{ for } k > N+1$$
 (124)

Then by the strong comparison test, we see $\sum_{k=1}^{\infty} a_k$ converges by comparison to the convergent $\sum_{k=1}^{\infty} \left(r^k \frac{|a_{N+1}|}{r^{N+1}} \right) = \frac{|a_{N+1}|}{r^{N+1}} \sum_{k=1}^{\infty} r^k$ for the terms k > N+1. (Note 0 < r < 1).

Case 3: Consider two series;

- $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges.
- $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ converges.

Both have $|a_{n+1}/a_n| \to 1$, so the test is inconclusive in this case.

4.3 Power Series

One of the most important examples of a series in physics is a **power series**.

Definition (Power series):

A **power series** is a series which is a function of a real variable x of the form;

$$\sum_{k=0}^{\infty} c_k x^k \tag{125}$$

for $c_k \in \mathbb{R}$ for all $k \in \mathbb{N}$.

We state without proof the following theorem:

Theorem 4.1. Power series

For a power series there are 3 possibilities.

- 1. The series diverges for all $x \in \mathbb{R}$, $x \neq 0$.
- 2. The series converges for all $x \in \mathbb{R}$.
- 3. There exists $r \in \mathbb{R}$ with r > 0 such that the series is absolutely convergent for |x| < r, diverges for |x| > r and may or may not converge for $x = \pm r$.

In the latter case r is called the radius of convergence.

Examples:

- $\sum_{k=0}^{\infty} k! x^k$ diverges, by ratio test, for any $x \in \mathbb{R}$.
- $\sum_{k=0}^{\infty} \frac{1}{k!} x^k$ converges, by ratio test, for any $x \in \mathbb{R}$.
- $\sum_{k=0}^{\infty} x^k$ converges for |x| < 1, and diverges for $|x| \ge 1$.
- $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$ converges for |x| < 1, diverges for |x| > 1. It converges for x = 1 and diverges for x = -1.

Proposition 4.7. If for a power series $\sum_{k=0}^{\infty} c_k x^k$ the sequence $\left(|c_n|^{\frac{1}{n}}\right)$ converges so $|c_n|^{\frac{1}{n}} \to \frac{1}{r}$ for $r \in \mathbb{R}$, with r > 0, then r is the radius of convergence.

Proof. Consider applying the root test to a power series. Consider the power series $\sum_{k=0}^{\infty} c_k x^k = c_0 + \sum_{n=1}^{\infty} a_n$ with $a_n = c_n x^n$.

Then consider (y_n) with,

$$y_n = |a_n|^{\frac{1}{n}} = |c_n x^n|^{\frac{1}{n}} = |c_n|^{\frac{1}{n}} |x|$$
(126)

Suppose the sequence $\left(|c_n|^{\frac{1}{n}}\right)$ converges to a finite real, so $|c_n|^{\frac{1}{n}} \to \frac{1}{r}$ for $r \in \mathbb{R}, r > 0$. Then,

$$y_n \to y = \frac{|x|}{r} \quad \text{as} \quad n \to \infty$$
 (127)

Then by the root test the series is convergent if y < 1, ie. |x| < r, and is divergent if y > 1 ie. |x| > r. For y = 1, so |x| = r then the series may or may not converge.

4.4 Riemann reordering

We have defined series as a sum of a sequence. Now a sequence has a definite ordering of its elements. Does that matter for the series, which after all is simply their sum?

Consider the example;

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

$$= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{5} - \frac{1}{10}\right)$$

$$- \frac{1}{12} + \left(\frac{1}{7} - \frac{1}{14}\right) - \dots$$

$$- \frac{1}{4r} + \left(\frac{1}{2r+1} - \frac{1}{2(2r+1)}\right) - \dots$$

$$= \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \frac{1}{12} + \frac{1}{14} + \dots$$

$$- \frac{1}{2(2r)} + \frac{1}{2(2r+1)} + \dots$$

$$= \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots\right)$$

$$= \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$$

$$(128)$$

We have previously shown this series converges, and hence is finite. Thus we have reached a contradiction.

This example illustrates that it isn't valid to reorder terms in a series.

Theorem 4.2. (Riemann reordering) Consider the series $\sum_{k=1}^{\infty} a_k$.

• If it converges absolutely then any reordering of the series converges to the same value.

• If it converges, but does **not** converge absolutely, then for every real number $\rho \in \mathbb{R}$ there exists a reordering of the summands, (a'_k) , such that $\sum_{k=1}^{\infty} a'_k = \rho$.

Proof. (Sketch of proof only)

If a series converges but not absolutely there must be an infinite sequence of positive summands and an infinite sequence of negative summands. Both these sequences must tend to zero.

Let (p_n) be the positive sequence and (q_n) be the negative one. Suppose $\rho > 0$ is the value we want the reordered series to converge to.

Take just enough of the first (p_n) 's so their sum is just larger than ρ .

(Note this is possible as the sum of the (p_n) must diverge, as the series does not converge absolutely).

Now take just enough of the first (q_n) 's so the sum is now just less than ρ .

Now take enough of the next (p_n) 's so the sum is again just larger than ρ .

Again take enough of the next (q_n) 's so the sum is just less than ρ .

Continue in this manner. Since both sequences tend to zero this process converges on ρ .