Mathematical Analysis 2017-8 Toby Wiseman

Example sheet 1

Set basics and proof

Question 1.

What is the cardinality of the following sets?

- a) $\{0, 1, 2, 3\}$
- c) {∅}

e) $\{\{2,3,4\}\}$

b) ∅

d) {{5}}}

f) $\{\mathbb{N}^+,\emptyset\}$

Answer:

The cardinalities are;

- a) 4 the set contains 4 things (numbers).
- b) 0 remember \emptyset is an empty set.
- c) 1 $\{\emptyset\}$ is a set containing one thing, the empty set.
- d) 1 $\{\{5\}\}\$ contains one thing, the set $\{5\}$.
- e) 1 $\{\{2,3,4\}\}\$ contains one thing, the set $\{2,3,4\}$.
- f) 2 the set contains two things, the set \mathbb{N}^+ and the empty set.

Question 2.

Let $A = \{1, 2, 3\}$, $B = \{1, 2\}$, $C = \{1, 3\}$, $D = \{2, 3\}$, $E = \{1\}$, $F = \{2\}$, $G = \{3\}$, $H = \emptyset$. Simplify the following expressions. The answers should be one of A, B, \ldots, H .

a) $A \cap B$

e) $A \setminus B$

i) $A \cup ((B \setminus C) \setminus F)$

b) $A \cup B$

f) $C \setminus A$

j) $H \cup H$

- c) $A \cap (B \cap C)$
- g) $(D \setminus F) \cup (F \setminus D)$
- k) $A \cap A$

- d) $(C \cup A) \cap B$
- h) $G \setminus A$

1) $((B \cup C) \cap C) \cup H$

Answer:

a)
$$A \cap B = \{1, 2, 3\} \cap \{1, 2\} = \{1, 2\} = B$$

b)
$$A \cup B = \{1, 2, 3\} \cup \{1, 2\} = \{1, 2, 3\} = A$$

c)
$$A \cap (B \cap C) = \{1, 2, 3\} \cap (\{1, 2\} \cap \{1, 3\}) = \{1, 2, 3\} \cap \{1\} = \{1\} = E$$

d)
$$(C \cup A) \cap B = (\{1,3\} \cup \{1,2,3\}) \cap \{1,2\} = \{1,2,3\} \cap \{1,2\} = \{1,2\} = B$$

e)
$$A \setminus B = \{1, 2, 3\} \setminus \{1, 2\} = \{3\} = G$$

f)
$$C \setminus A = \{1,3\} \setminus \{1,2,3\} = \{\} = H$$

g)
$$(D \setminus F) \cup (F \setminus D) = (\{2,3\} \setminus \{2\}) \cup (\{2\} \setminus \{2,3\}) = \{3\} \cup \{\} = \{3\} = G$$

h)
$$G \setminus A = \{3\} \setminus \{1, 2, 3\} = \{\} = H$$

i)
$$A \cup ((B \setminus C) \setminus F) = \{1, 2, 3\} \cup ((\{1, 2\} \setminus \{1, 3\}) \setminus \{2\}) = \{1, 2, 3\} \cup (\{2\} \setminus \{2\}) = \{1, 2, 3\} \cup \{\} = \{1, 2, 3\} = A$$

- j) $H \cup H = H$, note that for any set X, then $X \cup X = X$.
- k) $A \cap A = A$, likewise for any set X then $X \cap X = X$.

l)
$$((B \cup C) \cap C) \cup H = ((\{1,2\} \cup \{1,3\}) \cap \{1,3\}) \cup \{\} = (\{1,2,3\} \cap \{1,3\}) \cup \{\} = (\{1,3\}) \cup \{\} = \{1,3\} = C$$

Question 3.

Consider the sets $A, B, \dots H$ defined in question 2. Are the following true or false?

a) $\emptyset \in A$

c) $2 \in A$

e) $\{1\} \in B$

b) $\emptyset \subset A$

d) $2 \subset A$

f) $\{1\} \subset B$

Answer:

- a) $\emptyset \in A$ false. The set A does not contain an element which is the empty set $\{\}$.
- b) $\emptyset \subset A$ true, every set has an empty subset.
- c) $2 \in A$ true
- d) $2 \subset A$ false, since 2 is not a set, it cannot be a subset of anything.
- e) $\{1\} \in B$ false. $B = \{1, 2\}$ and only contains the numbers 1 and 2. The set $\{1\}$ is neither of these.
- f) $\{1\} \subset B$ true. Just taking the element 1 does give a subset of B. Others are \emptyset , $\{2\}$ and $\{1,2\}$.

Question 4.

Consider the sets $A, B, \dots H$ defined in question 2.

- a) Write out the elements of the set $A \times B$.
- b) Write out the elements of the set $C \times C$.
- c) What is the cardinality of $A \times H$?
- d) Write out the elements of the power set 2^A .

Answer:

- a) $A \times B = \{\{1,1\},\{2,1\},\{3,1\},\{1,2\},\{2,2\},\{3,2\}\}$
- b) $C \times C = \{\{1,1\},\{3,1\},\{1,3\},\{3,3\}\}$
- c) A more tricky one; Remember the definition of the cartesian product; $A \times H = \{(a,h)|a \in A , h \in H\}$. So, $A \times H = \{(a,h)|a \in \{1,2,3\} , h \in \{\}\}$. But there are no $h \in \{\}$, so $A \times H = \emptyset$ as it is empty. The cardinality is zero.
- d) The power set 2^A is all subsets of A.

$$2^{A} = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$$
 (1)

Note that $|2^A| = 8 = 2^{|A|}$.

Proof Basics

Question 5.

Prove by contradiction that there are infinitely many natural numbers.

Answer:

Proposition: There are infinitely many natural numbers.

Proof. Suppose for contradiction that the set of natural numbers, \mathbb{N} , is finite. Then there exists a greatest natural number N ie. n < N for all other $n \in \mathbb{N}$. However $(1+N) \in \mathbb{N}$ and (1+N) > N which is a contradiction. Hence the proposition is true.

Question 6.

Prove by contradiction;

- a) The sum of a rational number and an irrational number is irrational.
- b) The product of a non-zero rational number and an irrational number is irrational.

Answer:

Proposition: If $q \in \mathbb{Q}$ and $r \in (\mathbb{R} \setminus \mathbb{Q})$ then $q + r \in (\mathbb{R} \setminus \mathbb{Q})$.

Proof. Since q is rational we may write $q = \frac{n}{m}$ for some $n \in \mathbb{Z}$, $m \in \mathbb{N}^+$. Assume for contradiction that q + r is also rational so we may write $(q + r) = \frac{N}{M}$ for some $N \in \mathbb{Z}$, $M \in \mathbb{N}^+$.

Then,

$$r = (q+r) - q = \frac{N}{M} - \frac{n}{m} = \frac{Nm - nM}{Mm} = \frac{n'}{m'}$$
 (2)

However we see $r = \frac{n'}{m'}$ is a ratio of $n' = Nm - nM \in \mathbb{Z}$, $m' = Mm \in \mathbb{N}^+$ which is a contradiction since r is irrational.

Hence the proposition is true.

Proposition: If $q \in \mathbb{Q} \setminus \{0\}$ and $r \in (\mathbb{R} \setminus \mathbb{Q})$ then $q \cdot r \in (\mathbb{R} \setminus \mathbb{Q})$.

Proof. Since q is rational and non-zero we may write $q = \frac{n}{m}$ for some $n \in \mathbb{Z} \setminus \{0\}$, $m \in \mathbb{N}^+$. Assume for contradiction that $q \cdot r$ is also rational so we may write $q \cdot r = \frac{N}{M}$ for some $N \in \mathbb{Z}, M \in \mathbb{N}^+$.

Then since $q \neq 0$,

$$r = \frac{q \cdot r}{q} = \frac{\frac{N}{M}}{\frac{n}{m}} = \frac{n'}{m'} \tag{3}$$

However we see $r = \frac{n'}{m'}$ is a ratio of $n' = Nm \in \mathbb{Z}$, $m' = nM \in \mathbb{Z} \setminus \{0\}$, and so is rational, which is a contradiction since r is irrational.

Hence the proposition is true.

Question 7.

Prove by induction that for $x \neq 1$ and $n \in \mathbb{N}$;

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

Answer:

Proposition: $\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$ for $x \neq 1$ and $n \in \mathbb{N}$.

Proof. We use induction;

- For n=0 the lhs = $x^0=1$ and the rhs = $\frac{1-x^1}{1-x}=1$ so the claim is true.
- Suppose the claim is true for some $n \in \mathbb{N}$. Then (for $x \neq 1$),

$$\sum_{k=0}^{n+1} x^k = \sum_{k=0}^n x^k + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + \frac{(1 - x)x^{n+1}}{1 - x}$$
$$= \frac{1 - x^{n+1}}{1 - x} + \frac{x^{n+1} - x^{n+2}}{1 - x} = \frac{1 - x^{n+2}}{1 - x}$$

showing the claim also holds for (n+1).

By induction the claim is true for all $n \in \mathbb{N}$.

Question 8.

Assuming the fundamental theorem of arithmetic, prove that there are infinitely many prime numbers.

Recall the fundamental theorem of arithmetic states: there is a unique prime factorization for any number greater than one.

[Hint: use contradiction and consider a number of the form; $1 + p_1 p_2 p_3 \dots p_N$, where $p_1, p_2, \dots p_N$ are prime.]

Answer:

Proposition: there are infinitely many prime numbers.

Proof. Assume for contradiction there are finitely many primes, say N. We may list them in order,

$$p_1 < p_2 < p_3 < \dots < p_{N-1} < p_N \tag{4}$$

with p_N being the largest prime. Now consider the number which is the product of all the primes plus one, so,

$$Z = 1 + p_1 p_2 p_3 \dots p_{N-1} p_N \tag{5}$$

However Z divided by any of the primes p_i , $1 \le i \le N$ has remainder one. Hence Z > 1 has no prime factors, and therefore (by the fundamental thm of arithmetic) must be prime itself. But since $Z > p_N$ this is a contradiction. Therefore there are infinitely many primes.

Question 9.

- a) Prove that $\sqrt{2}$ is irrational. [Hint: Consider for contradiction that $2 = \frac{q^2}{r^2}$, show q and r must have a common factor.]
- b) Generalize this proof to show \sqrt{n} is irrational for any prime number n.

[You may use without proof the fundamental theorem of arithmetic.]

Answer:

Proposition: $\sqrt{2}$ is not rational.

Proof. Assume for contradiction that $\sqrt{2}$ is rational. Then there exists $p, q \in \mathbb{N}^+$ such that,

$$\sqrt{2} = \frac{p}{q} \tag{6}$$

where p, q have no common factors. Then squaring,

$$2 = \frac{p^2}{q^2} \tag{7}$$

implies p^2 is even and hence since p is a natural number, p is even. Then we may write p = 2r for some $r \in \mathbb{N}^+$. Now we have,

$$2 = \frac{4r^2}{q^2} \quad \Longrightarrow \quad 2 = \frac{q^2}{r^2} \tag{8}$$

which now implies q^2 is even and hence q is even. But if p and q are both even then they have the common factor two which is a contradiction. Hence $\sqrt{2}$ is not rational ie. is irrational.

The key to this proof was seeing that if $p \in \mathbb{N}^+$ and p^2 is even, then so is p. More generally the following holds;

Proposition: Let $p \in \mathbb{N}^+$. If p^2 has prime factor n, so does p.

Proof. By the fundamental theorem of arithmetic we may uniquely write $p = p_1^{n_1} p_2^{n_2} p_3^{n_3} \dots p_k^{n_k}$ for some $k \in \mathbb{N}^+$, and $n_i \in \mathbb{N}^+$. Then,

$$p^{2} = p_{1}^{2n_{1}} p_{2}^{2n_{2}} p_{3}^{2n_{3}} \dots p_{k}^{2n_{k}}$$

$$\tag{9}$$

Thus if p^2 has a prime factor n, it has it at least twice, and p also has it at least once.

Proposition: \sqrt{n} is not rational for n prime.

Proof. Assume for contradiction that \sqrt{n} is rational. Then there exists $p, q \in \mathbb{N}^+$ such that,

$$\sqrt{n} = \frac{p}{q} \tag{10}$$

where p, q have no common factors. Then squaring,

$$n = \frac{p^2}{q^2} \tag{11}$$

implies $p^2 = nq^2$. Thus the number p^2 has a prime factor n. Hence (by our proposition above) the number p must also have a prime factor n. Thus we may write, p = nr for some $r \in \mathbb{N}^+$. Now we have,

$$n = \frac{n^2 r^2}{q^2} \quad \Longrightarrow \quad n = \frac{q^2}{r^2} \tag{12}$$

which now implies q^2 , and hence q also have prime factor n. But if p and q both share the common prime factor n this is a contradiction. Hence \sqrt{n} is not rational ie. is irrational. \square