Mathematical Analysis 2017-8 Toby Wiseman

Example sheet 3

Numbers, counting and infinity

Question 1.

What is the cardinality of the following sets;

- a) Ø
- b) $\{\emptyset\}$
- c) $\{\emptyset, \{\emptyset\}\}$
- $\mathbf{d}) \ \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$

[Such sets can be used to define the natural numbers 'from nothing'.]

Answer:

- a) $|\emptyset| = 0$ as $\emptyset = \{\}$ contains no elements.
- b) $|\{\emptyset\}| = 1$. There is one element in this set (the element is the empty set).
- c) $|\{\emptyset, \{\emptyset\}\}| = 2$. There are two elements, the sets \emptyset and $\{\emptyset\}$.
- d) $|\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}| = 3$. There are 3 elements, the sets \emptyset , $\{\emptyset\}$ and $\{\emptyset, \{\emptyset\}\}$.

Question 2.

Find a rational expression for the following periodic decimals;

- a) 2.2222222... (ie. $2.\dot{2}$)
- b) 0.84090909... (ie. $0.84\dot{0}\dot{9}$)
- c) 1.542303303303... (ie. 1.542303)

You may use the following result for a geometric series; for $x \in \mathbb{R}$ and |x| < 1 then,

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

Answer:

a)

$$2.2222222... = 2 + \frac{2}{10} + \frac{2}{100} + \frac{2}{1000} + ...$$

$$= 2\left(1 + \frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^3} + ...\right)$$

$$= 2 \cdot \frac{1}{1 - \frac{1}{10}} = 2 \cdot \frac{10}{9} = \frac{20}{9}$$
(1)

b)

c)

$$1.542303303303... = 1.542 + \frac{303}{1000000} \left(1 + \frac{1}{1000} + \frac{1}{1000^2} + \frac{1}{1000^3} + + ... \right)$$

$$= \frac{1542}{1000} + \frac{303}{1000000} \cdot \frac{1}{1 - \frac{1}{1000}} = \frac{771}{500} + \frac{303}{1000000} \frac{1000}{999}$$

$$= \frac{771}{500} + \frac{303}{999000} = \frac{771 \times 1998 + 303}{999000}$$

$$= \frac{1540761}{999000}$$

$$= \frac{513587}{333000}$$
(3)

Question 3.

In lectures we will prove $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$. Assuming this result, prove $|\mathbb{R}^n| = |\mathbb{R}|$ for any $n \in \mathbb{N}^+$.

Answer:

Claim: $|\mathbb{R}^n| = |\mathbb{R}|$ for $n \in \mathbb{N}^+$.

Proof. We use induction;

- The proposition is obviously true for n = 1, and by assuming $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$ also for n = 2.
- Suppose the proposition is true for some $n \in \mathbb{N}^+$, n > 2. Then $|\mathbb{R}^n| = |\mathbb{R}|$ for that n and so there exists a bijection $f : \mathbb{R}^n \to \mathbb{R}$.

Now consider the map built from this;

$$g: \mathbb{R}^{n+1} \to \mathbb{R} \times \mathbb{R}$$
$$x = (a_1, a_2, \dots, a_n, b) \to g(x) = (f(a_1, a_2, \dots, a_n), b)$$

This is a bijection (since f is a bijection).

Since we assume $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$ there exists a bijection $h : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

Then the map $h \circ g$ is a bijection, $h \circ g : \mathbb{R}^{n+1} \to \mathbb{R}$. Hence the proposition also holds for (n+1) if it holds for n.

By induction the proposition holds for all $n \in \mathbb{N}^+$.

Question 4.

Prove that if F is a finite set, and I is a countable set, then $I \cup F$ is countable.

[Hint: in lectures we proved $I_1 \cup I_2$ was countable if $I_{1,2}$ were countable sets - try a similar argument.]

Answer:

Claim: If F is a finite set and I is a countable set, then $I \cup F$ is countable.

Proof. Suppose |F| = n. We may list the elements of $F = \{f_1, f_2, \dots f_n\}$.

Since I is countable we may list its elements, $I = \{i_1, i_2, i_3, \ldots\}$.

Then we may list the elements of $I \cup F$ as $\{f_1, f_2, \dots f_n, i_1, i_2, i_3, \dots\}$ where we omit any repetitions in the listing (at most n of them).

Hence $I \cup F$ is infinite but listable so it is countable.

Question 5.

Let both $f:A\to B$ and $g:X\to Y$ be bijections. Let $A\cap X=\emptyset$ and $B\cap Y=\emptyset$. Prove that,

$$h: \quad A \cup X \to B \cup Y$$

$$x \to h(x) = \left\{ \begin{array}{ll} f(x) & x \in A \\ g(x) & x \in X \end{array} \right.$$

is also a bijection.

Answer:

Claim: The map h (defined above) is a bijection.

Proof. Firstly we show h is an injection. Consider any $x, y \in A \cup X$. Since $A \cap X = \emptyset$ are 4 cases;

- if $x, y \in A$ then $x \neq y$ implies $h(x) \neq h(y)$ since f is an injection.
- if $x, y \in X$, then $x \neq y$ implies $h(x) \neq h(y)$ since g is an injection.
- if $x \in A$ and $y \in X$ then $x \neq y$ since $A \cap X = \emptyset$ and $h(x) \neq h(y)$ since $f(x) \neq g(y)$ as $B \cap Y = \emptyset$.
- likewise for $x \in X$ and $y \in A$ we have $x \neq y$ and $h(x) \neq h(y)$.

Thus if $x \neq y$ then we have $h(x) \neq h(y)$ and hence h is an injection.

Second we show it is a surjection. Consider $y \in B \cup Y$. Since $B \cap Y = \emptyset$ there are 2 cases;

- if $y \in B$ then $x = f^{-1}(y) \in A \subset A \cup X$ so that h(x) = y.
- if $y \in Y$ then $x = g^{-1}(y) \in X \subset A \cup X$ so that h(x) = y.

Hence for any $y \in B \cup Y$ there exists $x \in A \cup X$ such that h(x) = y. Hence h is surjective.

Question 6.

Suppose C is a countable set and I is an infinite (not necessarily countable) set such that $C \cap I = \emptyset$. Prove that $|C \cup I| = |I|$.

[Hint: I has a countable subset - call this K - and so we can decompose I as $I = (I \setminus K) \cup K$. Use this and the result in question 5 to construct a bijection between $C \cup I$ and I.]

Answer:

Claim: Let C and I be infinite sets such that C is countable and $C \cap I = \emptyset$. Then $|C \cup I| = |I|$.

Proof. I is an infinite set and thus has a countable subset K so $I = K \cup (I \setminus K)$.

We will construct a bijection using the result from question 5.

Let A = K and $X = (I \setminus K)$ so that $A \cup X = I$. Note that $A \cap X = \emptyset$.

Let $B = (C \cup K)$ and $Y = (I \setminus K)$ so that $B \cup Y = C \cup I$. Note $B \cap Y = \emptyset$.

Now A and B are countable so there exists a bijection $f: A \to B$.

Since X = Y there exists the trivial bijection $id_X : X \to Y$.

From question 5 the following is then a bijection from I to $C \cup I$;

$$h: \quad A \cup X \to B \cup Y$$

$$x \to h(x) = \left\{ \begin{array}{ll} f(x) & x \in A \\ x & x \in X \end{array} \right.$$

Hence $|I| = |C \cup I|$.

Question 7.

Consider the Cartesian product of countably infinitely many copies of the set $\{0, 1\}$;

$$K = \{0, 1\} \times \dots$$

Elements of K are then infinite sequences of zeros and ones eg. $(0,1,1,0,0,0,1,1,\ldots) \in K$.

Prove that $|K| = |\mathbb{R}|$.

[Hint: Use the binary (ie. base 2) number system to represent a real number. Just as for decimals where we exclude numbers ending in recurring 9's, be careful with the binary numbers. You will need the result from question 6.]

Answer:

Proof. Use binary representation of real numbers eg.

$$11.011\dot{0} = 2 + 1 + 0 + \frac{1}{4} + \frac{1}{8}$$
$$= 3.375\dot{0} \tag{4}$$

Recall for decimals we excluded the representation ending in recurring 9's (as it is redundant). Likewise for binary we exclude the form ending in recurring 1's.

Now partition K into 3 non-intersecting subsets; $K = K_1 \cup K_2 \cup K_3$, where,

- $K_1 = \{(0,0,0,0,0,\ldots)\}$ ie. the set with one element which only contains zeros.
- K_2 =set of all sequences that end in recurring ones.
- $K_3 = K \setminus (K_1 \cup K_2)$ ie. all the rest!

Firstly $|K_1| = 1$.

Secondly the set K_2 is countable as we can list the elements,

$$K_{2} = \{ (1, 1, 1, 1, \dots), (0, 1, 1, 1, \dots), (1, 0, 1, 1, \dots), (1, 0, 1, 1, \dots), (1, 1, 0, 1, \dots), \dots \}$$

$$(5)$$

Thirdly, using binary infinite decimals we have a bijection,

$$f: K_3 \to (0,1)$$

 $(a_1, a_2, a_3, \dots) \to 0.a_1 a_2 a_3 \dots$ (6)

so $|K_3| = |(0,1)| = |\mathbb{R}|$.

Then $K = K_3 \cup (K_1 \cup K_2)$ and $K_1 \cup K_2$ is countable, with $K_3 \cap (K_1 \cup K_2) = \emptyset$ so by the result in question 6 we have $|K| = |K_3| = |R|$.

Harder questions: if you have time...

Question 8.

Prove that $\left|2^{\mathbb{N}^+}\right| = |\mathbb{R}|$ by finding an injection from $\mathbb{R} \to 2^{\mathbb{N}^+}$ and another from $2^{\mathbb{N}^+} \to \mathbb{R}$.

[Hint: use infinite decimals to construct these injections. Make sure the maps you construct really are injections.]

Answer:

Claim: $|(0,1)| \leq |2^{\mathbb{N}^+}|$ ie. there exists an injection $f:(0,1) \to 2^{\mathbb{N}^+}$.

Proof. We construct an injection explicitly using infinite decimals (there are many ways to do this). Consider the map;

$$f: (0,1) \to 2^{\mathbb{N}^+}$$

 $x = 0.a_1 a_2 a_3 \dots \to \{n_1, n_2, n_3, \dots\}$

where we use infinite decimal form on the l.h.s. above, and,

$$n_1 = 1a_1$$

$$n_2 = 1a_2a_3$$

$$n_3 = 1a_4a_5a_6$$

$$n_4 = 1a_7a_8a_9a_{10}$$

$$\vdots$$

using usual decimal form for the natural numbers n_i .

Note that adding the leading one's above ensures the map is an injection, even if some of the digits a_i are zero's. The numbers $n_i \neq n_j$ unless i = j as they have different numbers of digits. Then every real is uniquely mapped to a set of positive natural numbers.

For example:

$$x = 0.2854368652... \rightarrow f(x) = \{12, 185, 1436, 18652, ...\}.$$

 $x = 0.285\dot{0} \rightarrow f(x) = \{12, 185, 1000, 10000, ...\}.$

Claim: $\left|2^{\mathbb{N}^+}\right| \leq |(0,1)|$ ie. there exists an injection $g: 2^{\mathbb{N}^+} \to (0,1)$.

Proof. Consider the map;

$$g: 2^{\mathbb{N}^+} \to (0,1)$$

 $x = \{n_1, n_2, n_3, \ldots\} \to g(x) = 0.a_1 a_2 a_3 \ldots$

where we use infinite decimal form on the r.h.s. above and take,

$$a_k = \begin{cases} 2 & k \in x \\ 1 & k \notin x \end{cases} \quad \forall \ k \in \mathbb{N}^+$$

This is an injection - every element of $2^{\mathbb{N}^+}$ is uniquely mapped to a real in (0,1).

For example;

$$x = \{4, 2, 10\} \rightarrow f(x) = 0.1212111112\dot{1}.$$

$$x = \{2, 4, 10, 254, 2532, \ldots\} \rightarrow f(x) = 0.121211111211111\dots$$

Claim: $|\mathbb{R}| = \left| 2^{\mathbb{N}^+} \right|$

Proof. Consider the bijection $h:(0,1)\to\mathbb{R}$ given by $h(x)=\tan\left(\pi\left(x-\frac{1}{2}\right)\right)$. Then $f\circ h^{-1}:\mathbb{R}\to 2^{\mathbb{N}^+}$ is an injection. Then $h\circ g:2^{\mathbb{N}^+}\to\mathbb{R}$ is an injection.

Hence by Cantor-Berstein-Schroder there exists a bijection $k: \mathbb{R} \to 2^{\mathbb{N}^+}$. Hence $|\mathbb{R}| =$