Mathematical Analysis 2017-8 Toby Wiseman

Example sheet 6

Functions

Question 1.

Sketch the function $f: A \to \mathbb{R}$;

$$f(x) = \begin{cases} 2 & x = 0 \\ e^{-x} & x > 0 \\ x^2 & x < 0 \end{cases}$$

defined on the domain A = (-1, 1). State (without proof) the following;

- $\lim_{x \to \frac{1}{2}} f(x)$
- $\lim_{x\to 0} f(x)$ if it exists otherwise $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$
- $\sup(f)$ and $\inf(f)$
- \bullet The maximum and minimum of f if they exist.

Question 2.

Prove using $\epsilon - \delta$ that the function,

$$f:(1,\infty) \to \mathbb{R}$$

 $x \to f(x) = \sqrt{x-1}$

has the limit $\lim_{x\to 1^+} f(x) = 0$.

Question 3.

Suppose we have a function $f: A \to \mathbb{R}$ and a point $y \in A$ such that $l_1 = \lim_{x \to y^-} f(x)$ and $l_2 = \lim_{x \to y^+} f(x)$.

- Prove that if $l = l_1 = l_2$ then $l = \lim_{x \to y} f(x)$.
- Prove that if $l_1 \neq l_2$ then $\lim_{x\to y} f(x)$ does not exist.

Question 4.

Firstly sketch the function $f: \mathbb{R} \to \mathbb{R}$ defined by,

$$f(x) = \begin{cases} 2 - x & x > 0\\ 1 + x & x \le 0 \end{cases}$$

Prove using $\epsilon - \delta$ that it has no limit at x = 0, ie. $\lim_{x\to 0} f(x)$ does not exist. You may use the result from the previous question.

Question 5.

Sketch the function $f: \mathbb{R} \to \mathbb{R}$ defined by,

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & x \ge 0\\ 0 & x < 0 \end{cases}$$

Prove this has no limit at x = 0 from the right (ie. $\lim_{x\to 0^+} f(x)$ does not exist).

Question 6.

Assume the functions f(x) and g(x) are defined on A = (a, b) and are continuous at a point $y \in A$. Prove that the product of the functions, $f(x) \cdot g(x)$, is also continuous at y.

[Be careful to treat the situation that f(y) = 0 or g(y) = 0 properly. This is very similar to when we considered the limit of a product of two sequences.]

Question 7.

Prove that the function $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$ is continuous on all of \mathbb{R} .

Hint: Consider a point $y \in \mathbb{R}$ and treat y = 0 and $y \neq 0$ separately; in the latter case use, $x^2 - y^2 = (x - y)^2 + 2y(x - y)$.

Question 8.

Sketch the function $f: \mathbb{R} \to \mathbb{R}$ with,

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

Prove using $\epsilon - \delta$ that it is continuous at x = 0.

In fact this function is not only continuous at x = 0, but also infinitely differentiable (C^{∞}) there.

Compute $f^{(n)}(0)$ and hence show f(x) is not analytic at x = 0.

[Hint: You are not required to show f is C^{∞} at x=0. So to compute $f^{(n)}(0)$ you need only consider $x \leq 0$ - ie. you need not show the derivative computed from x>0 has a limit as $x\to 0^+$ that agrees with that for $x\to 0^-$.]

Question 9.

Compute the Taylor series for $f(x) = \frac{1}{1-x}$ about x = 0, and confirm that it gives,

$$\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^n = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots$$

Consider this series and hence show that $f(x) = \frac{1}{1-x}$ is analytic at x = 0.

Question 10.

Use Taylor's theorem to prove that $f(x) = \cos x$ is an analytic function at x = 0.