PHYSICS 1: MATHEMATICAL ANALYSIS I. PROBLEMS 3

- 1. Integrate by parts:
- (a) $x^3 \sin x$; (b) $\tan^{-1} x$.
- 2. Evaluate the integrals:

(a)
$$\int_{0}^{1} (1+x^2)^{-3/2} dx$$

(b)
$$\int_{0}^{\infty} \left(1 + e^{2x}\right)^{-1} dx$$
,

(a)
$$\int_0^1 (1+x^2)^{-3/2} dx$$
 (b) $\int_0^\infty \left(1+e^{2x}\right)^{-1} dx$, (c) $\int_1^{3/2} (2-x)^{-1} (x-1)^{-1/2} dx$.

Hint: In (a) substitute $x = \tan \theta$; in (b) substitute $u = e^{2x}$; in (c) use the substitution $(x-1) = u^2$.

3. Which of the following integrals are convergent?

(a)
$$\int_0^1 \ln x \ dx$$
; (b) $\int_0^1 (x-1)^{-2} \ dx$;

(b)
$$\int_0^1 (x-1)^{-2} dx$$

4. Show that

$$\int x^k \ln x \, dx = \frac{x^{k+1}}{(k+1)^2} \left[(k+1) \ln x - 1 \right] + c$$

where c is a constant and $k \neq -1$.

Questions for Tutorials (week 5)

5* Which of the following integrals are convergent?

(a)
$$\int_{1}^{\infty} \ln x \, dx$$
;

(a)
$$\int_1^\infty \ln x \, dx$$
; (b) $\int_0^\infty e^{-ax} \sin bx \, dx$, $(a>0)$.

6* Integrate

(a)
$$\frac{x^4}{x^2+1}$$
; (b) $\frac{1}{x \ln x}$.

(b)
$$\frac{1}{x \ln x}$$

Maths: Functions, multiple choice assessment (to be submitted online by Midday **4**th November) Prof. Andy Parry

1) If xe^y	=	$\cos(xy)$, what is	dy dx	at x =	1,	y=0?
--------------	---	------------	-----------	----------	--------	----	------

- a) 1
- b) 0
- c) -1

2) If
$$f(x) = \frac{2x^2-5x-25}{x^2+x-2}$$
, at what value of x is there a maximum?

- a) -2
- b) -5
- c) -1

3) In question 2, at what value of x is there a minimum?

- a) -2
- b) -5
- c) -1

4) What is the derivative of $y = x^x$ at x = 2?

- a) 4
- b) 4ln2
- c) 4ln2 + 4

5) Consider the graph $r=1-\cos\theta$. At what positive value of x does the function have an infinite derivative $\frac{dy}{dx}$?

- a) 1/4
- b) 1/2
- c) 1

All questions are worth 2 marks