Mathematical Analysis 2017-8 Toby Wiseman

Tutorial problems 5 - Series

Question 1.

Carefully prove whether the following series are convergent or divergent;

a)
$$\sum_{k=1}^{\infty} \frac{k^2-1}{k^2+k+1}$$

b)
$$\sum_{k=1}^{\infty} (-1)^k$$

c)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$$

d)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k}}$$

e)
$$\sum_{k=1}^{\infty} \frac{1}{1+k^2}$$

f)
$$\sum_{k=1}^{\infty} \frac{k+1}{k!}$$

g)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{1+k^2}}$$

You may use the standard tests (eg. comparison, alternating series, root, ratio) without proof and also assume;

- the geometric series $\sum_{k=0}^{\infty} x^k$ is convergent for |x| < 1.
- the series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for p > 1 and diverges for p = 1.

Question 2.

Show that $\sum_{k=1}^{\infty} \frac{b_k}{k^2}$ converges, where (b_k) is a sequence where $|b_k| < B$ for $B \in \mathbb{R}$ and all $k \in \mathbb{N}^+$.

Question 3.

Use the Ratio test to prove the following;

- (a) the Taylor series (about zero) of the exponential function, the power series $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$, converges **absolutely** for all $x \in \mathbb{R}$.
- (b) the Taylor series of the logarithm (about one) given by the power series $\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n$, converges **absolutely** for |x| < 1 and diverges for |x| > 1.

What happens for $x = \pm 1$?